JP-10 (fuel)

Last updated

JP-10 (Jet Propellant 10) is a synthetic jet fuel, specified and used mainly as fuel in missiles. Being designed for military purposes, it is not a kerosene based fuel.

Contents

Developed to be a gas turbine fuel for cruise missiles, [1] it contains mainly exo-tetrahydrodicyclopentadiene (exo-THDCPD) with some endo-isomer impurity. [2] About 100 ppm of alkylphenol-based antioxidant is added to prevent gumming. Optionally, 0.10–0.15% of fuel system icing inhibitor may be added. [3] Exo-THDCPD is produced by catalytic hydrogenation of dicyclopentadiene and then isomerization. [4]

It superseded JP-9, which is a mixture of norbornadiene-based RJ-5 fuel, tetrahydrodicyclopentadiene and methylcyclohexane, because of a lower temperature service limit and about four times lower price. [5] Since the lack of volatile methylcyclohexane makes its ignition difficult, a separate priming fluid PF-1 with about 10-12% of this additive is required for the engine start-up. [5] Its main use is in the Tomahawk missiles. [6]

The Russian equivalent is called detsilin  [ ru ].

Chemical properties of JP-10 fuel

Uses

JP-10 absorbs heat energy, so is endothermic with a relatively high density of 940 kg/m3. It has a low freezing point of less than −110 °C (−166 °F) and the flash point is 130 °F (54 °C). The high energy density of 39.6 MJ/L makes it ideal for military aerospace applications - its primary use. The ignition and burn chemistry has been extensively studied. [8] [9] [10] The exo isomer also has a low freezing point. [11] [12] Its other properties have also been studied extensively. [13] [14] [15] [16] [17]

Even though its uses are mainly for the military, the relatively high cost has meant research has been undertaken to find lower costs routes including the use of cellulosic materials. [18]

Further research

Current and past areas of research focus on:

References

  1. Aviation Fuel Properties (PDF). Coordinating Research Council. 1983. p. 3. CRC Report Nº 530. Archived from the original (PDF) on 2012-07-22. Retrieved 2023-12-06.
  2. Schmidt 2022b, p. 3561.
  3. Schmidt 2022b, pp. 3561–3562.
  4. Schmidt 2022a, p. 1248.
  5. 1 2 Martel, Charles R. (1987). Military Jet Fuels, 1944-1987. Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, United States Air Force. pp.  10. DTIC ADA186752.
  6. Coggeshall, Katharine. "Revolutionizing Tomahawk fuel". Los Alamos National Laboratory. Archived from the original on 21 May 2020. Retrieved 20 May 2020.
  7. 1 2 3 4 "JP10 specs". web.stanford.edu. Retrieved 2024-05-20.
  8. "Exo-tricyclo[5.2.1.0(2.6)]decane". webbook.nist.gov. Retrieved 2023-10-03.
  9. Li, S. C.; Varatharajan, B.; Williams, F. A. (December 2001). "Chemistry of JP-10 Ignition" . AIAA Journal. 39 (12): 2351–2356. Bibcode:2001AIAAJ..39.2351L. doi:10.2514/2.1241. ISSN   0001-1452.
  10. Davidson, D. F.; Horning, D. C.; Herbon, J. T.; Hanson, R. K. (2000-01-01). "Shock tube measurements of JP-10 ignition" . Proceedings of the Combustion Institute. 28 (2): 1687–1692. Bibcode:2000PComI..28.1687D. doi:10.1016/S0082-0784(00)80568-8. ISSN   1540-7489.
  11. Herbinet, Olivier; Sirjean, Baptiste; Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Scacchi, Gérard; Marquaire, Paul-Marie (2006-10-01). "Primary Mechanism of the Thermal Decomposition of Tricyclodecane". The Journal of Physical Chemistry A. 110 (39): 11298–11314. arXiv: 0706.2066 . Bibcode:2006JPCA..11011298H. doi:10.1021/jp0623802. ISSN   1089-5639. PMID   17004739.
  12. Wu, Junjun; Gao, Lu Gem; Ning, Hongbo; Ren, Wei; Truhlar, Donald G. (2020-06-01). "Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10)". Combustion and Flame. 216: 82–91. Bibcode:2020CoFl..216...82W. doi: 10.1016/j.combustflame.2020.02.019 . ISSN   0010-2180. S2CID   216384271.
  13. "Exo-tricyclo[5.2.1.0(2.6)]decane". Cheméo. Retrieved 2023-10-03.
  14. Seiser, R.; Niemann, U.; Seshadri, K. (2011-01-01). "Experimental study of combustion of n-decane and JP-10 in non-premixed flows" . Proceedings of the Combustion Institute. 33 (1): 1045–1052. Bibcode:2011PComI..33.1045S. doi:10.1016/j.proci.2010.06.078. ISSN   1540-7489.
  15. Tao, Yujie; Xu, Rui; Wang, Kun; Shao, Jiankun; Johnson, Sarah E.; Movaghar, Ashkan; Han, Xu; Park, Ji-Woong; Lu, Tianfeng; Brezinsky, Kenneth; Egolfopoulos, Fokion N.; Davidson, David F.; Hanson, Ronald K.; Bowman, Craig T.; Wang, Hai (2018-12-01). "A Physics based approach to modeling real fuel combustion chemistry III Reaction kinetic model of JP10" . Combustion and Flame. 198: 466–476. Bibcode:2018CoFl..198..466T. doi:10.1016/j.combustflame.2018.08.022. ISSN   0010-2180. S2CID   104745782.
  16. Li, Heng; Liu, Guozhu; Jiang, Rongpei; Wang, Li; Zhang, Xiangwen (2015-05-01). "Experimental and kinetic modeling study of exo-TCD pyrolysis under low pressure" . Combustion and Flame. 162 (5): 2177–2190. Bibcode:2015CoFl..162.2177L. doi:10.1016/j.combustflame.2015.01.015. ISSN   0010-2180.
  17. Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P. (2013-01-01). "Regime transition from premixed to flameless oxidation in turbulent JP-10 flames" . Proceedings of the Combustion Institute. 34 (2): 3311–3318. Bibcode:2013PComI..34.3311G. doi:10.1016/j.proci.2012.06.173. ISSN   1540-7489.
  18. Li, Guangyi; Hou, Baolin; Wang, Aiqin; Xin, Xuliang; Cong, Yu; Wang, Xiaodong; Li, Ning; Zhang, Tao (2019-08-26). "Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound" . Angewandte Chemie International Edition . 58 (35): 12154–12158. doi:10.1002/anie.201906744. ISSN   1433-7851.
  19. Chenoweth, Kimberly; van Duin, Adri C. T.; Dasgupta, Siddharth; Goddard III, William A. (2009-03-05). "Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel" . The Journal of Physical Chemistry A. 113 (9): 1740–1746. Bibcode:2009JPCA..113.1740C. doi:10.1021/jp8081479. ISSN   1089-5639.
  20. Zhong, Bei-jing; Zeng, Zhao-mei; Zhang, Hou-zhen (2022-03-15). "An experimental and kinetic modeling study of JP-10 combustion" . Fuel. 312: 122900. Bibcode:2022Fuel..31222900Z. doi:10.1016/j.fuel.2021.122900. ISSN   0016-2361.
  21. Van Devener, Brian; Anderson, Scott L. (2006-09-01). "Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO 2 and Fe 2 O 3" . Energy & Fuels. 20 (5): 1886–1894. doi:10.1021/ef060064g. ISSN   0887-0624.
  22. Huang, Ming-Yu; Wu, Jung-Chung; Shieu, Fuh-Sheng; Lin, Jiang-Jen (2011-03-01). "Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst" . Fuel. 90 (3): 1012–1017. Bibcode:2011Fuel...90.1012H. doi:10.1016/j.fuel.2010.11.041. ISSN   0016-2361.
  23. Xing, Enhui; Mi, Zhentao; Xin, Chengwei; Wang, Li; Zhang, Xiangwen (2005-04-20). "Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites" . Journal of Molecular Catalysis A: Chemical. 231 (1): 161–167. doi:10.1016/j.molcata.2005.01.015. ISSN   1381-1169.
  24. E, Xiu-tian-feng; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun (2020-09-15). "Influence of quadricyclane additive on ignition and combustion properties of high-density JP-10 fuel" . Fuel. 276: 118047. Bibcode:2020Fuel..27618047E. doi:10.1016/j.fuel.2020.118047. ISSN   0016-2361.
  25. Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R.; Burdette, G. W. (1999-05-01). "Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels" . Energy & Fuels. 13 (3): 641–649. doi:10.1021/ef980195k. ISSN   0887-0624.

Further reading