JUMP GIS

Last updated
Jump/OpenJUMP
Original author(s) Vividsolutions Inc.
Developer(s) Jump Pilot Team
Stable release
2.1 / August 1, 2022;18 months ago (2022-08-01)
Repository github.com/openjump-gis
Written in Java
Operating system Windows, Linux, Unix, Apple macOS
Platform Cross-platform
Available in Multilingual
Type Desktop GIS
License GPL V2
Website www.openjump.org

Java Unified Mapping Program (JUMP) is a Java based vector and raster GIS and programming framework. [1] [2] Current development continues under the OpenJUMP name. [3]

Contents

Features

As featured on the project's website: [4]

  • Czech
  • German
  • English
  • Italian
  • Spanish
  • Finnish
  • French
  • Hungarian
  • Malayalam
  • Portuguese
  • Portuguese (Brazil)
  • Telugu
  • Chinese (simplified)
  • Chinese (Hong Kong SAR)


History

In 2002, as a project for the British Columbia Ministry of Sustainable Resource Management, Vivid Solutions Inc. created a software program to do automated matching ("conflation") of roads and rivers from different digital maps into an integrated single geospatial data set. The software team made the program flexible enough to be used not just for roads and rivers, but almost any kind of spatial data: provincial boundaries, power-station locations, satellite images, and so on. The program was named JUMP (JAVA Unified Mapping Platform), and it has become a popular, free Geographic Information System (GIS).

After the initial creation and deployment of JUMP, regular development of the program by Vivid Solutions stopped. However, the company continued offering support to the user community that had grown around JUMP, and provided information to developers that had begun to improve JUMP in small ways, or who had customized it to fit their needs. Martin Davis and Jon Aquino, two former employees of Vivid Solutions that worked on the original JUMP, played a key role in the growth of this community centered on JUMP.

It soon became evident that both the users and developers would benefit from a "unified" JUMP platform. This central or core platform would eliminate the compatibility issues that plagued the JUMP user community, and would give developers a platform on which to focus and coordinate their efforts. A number of the lead members from each team working with JUMP formed the JPP Development Committee, whose purpose was to guide and oversee this new unified platform. A name was chosen for this open source GIS program to be based on JUMP, "OpenJUMP". [5]

In particular during the second half of the 2010ths the original JUMP Platform as well as OpenJUMP GIS were used as a platform in research to develop new GIS algorithms and workflows, for instance at IGN France and the University of Zurich in automated cartography, [6] [1] and at Osnabrück University of Applied Sciences for then novel precision farming tools. [7] OpenJUMP has also been in use for teaching GIS at a range of universities, leading to its inclusion at the OSGeo Live DVD Project [8] along with many other mayor and minor free GIS software projects, despite not being an OSGeo project itself.

File formats

One important feature of Jump and OpenJUMP is the ability to work with GIS data in GML format. GML or "Geography Markup Language" is an XML (text-based) format for GIS data. It is a way to describe spatial information in a human readable form, and is an accepted "open standard" for GIS data.

OpenJUMP can currently read and write GML data, and the team hopes to develop a number of utilities that will improve OpenJUMP's ability to work with GML.

The ability to work with an open format like GML is important to implementers because it gives alternatives to proprietary formats like Autodesk DWG files or ESRI Shapefiles.

OpenJUMP nevertheless also reads and writes ESRI Shapefiles and supports ESRI ASCII grid format with an OpenJump plugin from the SIGLE team. While OpenJUMP is considered primarily a vector based GIS, it also supports rasters, as TIF files or the above ESRI ASCII grid.

See also

Related Research Articles

<span class="mw-page-title-main">Esri</span> Geospatial software & SaaS company

Environmental Systems Research Institute, Inc., doing business as Esri, is an American multinational geographic information system (GIS) software company headquartered in Redlands, California. It is best known for its ArcGIS products. With a 40% market share, Esri is the world's leading supplier of GIS software, web GIS and geodatabase management applications.

A GIS file format is a standard for encoding geographical information into a computer file, as a specialized type of file format for use in geographic information systems (GIS) and other geospatial applications. Since the 1970s, dozens of formats have been created based on various data models for various purposes. They have been created by government mapping agencies, GIS software vendors, standards bodies such as the Open Geospatial Consortium, informal user communities, and even individual developers.

In computing, GeoServer is an open-source server written in Java that allows users to share, process and edit geospatial data. Designed for interoperability, it publishes data from any major spatial data source using open standards. GeoServer has evolved to become an easy method of connecting existing information to virtual globes such as Google Earth and NASA World Wind as well as to web-based maps such as OpenLayers, Leaflet, Google Maps and Bing Maps. GeoServer functions as the reference implementation of the Open Geospatial Consortium Web Feature Service standard, and also implements the Web Map Service, Web Coverage Service and Web Processing Service specifications.

<span class="mw-page-title-main">TerraLib</span> Geographic information system software library

TerraLib is an open-source geographic information system (GIS) software library. It extends object-relational database management systems (DBMS) to handle spatiotemporal data types.

A GIS software program is a computer program to support the use of a geographic information system, providing the ability to create, store, manage, query, analyze, and visualize geographic data, that is, data representing phenomena for which location is important. The GIS software industry encompasses a broad range of commercial and open-source products that provide some or all of these capabilities within various information technology architectures.

The Extensible Metadata Platform (XMP) is an ISO standard, originally created by Adobe Systems Inc., for the creation, processing and interchange of standardized and custom metadata for digital documents and data sets.

A Web Map Service (WMS) is a standard protocol developed by the Open Geospatial Consortium in 1999 for serving georeferenced map images over the Internet. These images are typically produced by a map server from data provided by a GIS database.

An image file format is a file format for a digital image. There are many formats that can be used, such as JPEG, PNG, and GIF. Most formats up until 2022 were for storing 2D images, not 3D ones. The data stored in an image file format may be compressed or uncompressed. If the data is compressed, it may be done so using lossy compression or lossless compression. For graphic design applications, vector formats are often used. Some image file formats support transparency.

<span class="mw-page-title-main">Shapefile</span> Geospatial vector data format

The shapefile format is a geospatial vector data format for geographic information system (GIS) software. It is developed and regulated by Esri as a mostly open specification for data interoperability among Esri and other GIS software products. The shapefile format can spatially describe vector features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes. Each item usually has attributes that describe it, such as name or temperature.

MrSID is an acronym that stands for multiresolution seamless image database. It is a file format developed and patented by LizardTech for encoding of georeferenced raster graphics, such as orthophotos.

gvSIG Desktop application for working with geographic data

gvSIG, geographic information system (GIS), is a desktop application designed for capturing, storing, handling, analyzing and deploying any kind of referenced geographic information in order to solve complex management and planning problems. gvSIG is known for having a user-friendly interface, being able to access the most common formats, both vector and raster ones. It features a wide range of tools for working with geographic-like information.

<span class="mw-page-title-main">QGIS</span> Open-source desktop GIS software

QGIS, also known as Quantum GIS, is a geographic information system (GIS) software that is free and open-source. QGIS supports Windows, macOS, and Linux. It supports viewing, editing, printing, and analysis of geospatial data.

Kosmo is a desktop geographic information system (GIS) with advanced functions. It is the first of a series of developments that are being made available to the community.

The Open Source Geospatial Foundation (OSGeo), is a non-profit non-governmental organization whose mission is to support and promote the collaborative development of open geospatial technologies and data. The foundation was formed in February 2006 to provide financial, organizational and legal support to the broader Free and open-source geospatial community. It also serves as an independent legal entity to which community members can contribute code, funding and other resources.

<span class="mw-page-title-main">GDAL</span> Translator library for raster and vector geospatial data formats

The Geospatial Data Abstraction Library (GDAL) is a computer software library for reading and writing raster and vector geospatial data formats, and is released under the permissive X/MIT style free software license by the Open Source Geospatial Foundation. As a library, it presents a single abstract data model to the calling application for all supported formats. It may also be built with a variety of useful command line interface utilities for data translation and processing. Projections and transformations are supported by the PROJ library.

MapInfo Pro is a desktop geographic information system (GIS) software developed by Precisely, used for mapping and location analysis. It was formerly developed by Pitney Bowes Software and the MapInfo Corporation.

SOCET SET is a software application that performs functions related to photogrammetry. It is developed and published by BAE Systems. SOCET SET was among the first commercial digital photogrammetry software programs. Prior to the development of digital solutions, photogrammetry programs were primarily analog or custom systems built for government agencies.

A geographic data model, geospatial data model, or simply data model in the context of geographic information systems, is a mathematical and digital structure for representing phenomena over the Earth. Generally, such data models represent various aspects of these phenomena by means of geographic data, including spatial locations, attributes, change over time, and identity. For example, the vector data model represents geography as collections of points, lines, and polygons, and the raster data model represent geography as cell matrices that store numeric values. Data models are implemented throughout the GIS ecosystem, including the software tools for data management and spatial analysis, data stored in a variety of GIS file formats, specifications and standards, and specific designs for GIS installations.

The following tables compare general and technical information for a number of GIS vector file format. Please see the individual products' articles for further information. Unless otherwise specified in footnotes, comparisons are based on the stable versions without any add-ons, extensions or external programs.

Biosphere3D is an open-source project that targets interactive landscape scenery rendering based on a virtual globe. The software system supports multiple scales but focuses primarily on the creation of realistic views from eye-level or near ground level. The software is released under the MPL license and developed by Zuse Institute Berlin, Lenné3D and the open-source community for use on personal computers.

References

  1. 1 2 Burghardt, D., Neun, M., & Weibel, R. (2005). Generalization services on the web—classification and an initial prototype implementation. Cartography and geographic information science, 32(4), 257-268.
  2. "JUMP Unified Mapping Platform - VividSolutions, In". Archived from the original on 2013-05-28. Retrieved 2013-05-27.
  3. "An Overview on Current Free and Open Source Desktop GIS Developments - Steiniger and Bocher". Archived from the original on 2012-11-12. Retrieved 2013-05-27.
  4. "OpenJUMP Features". sourceforge.net. Retrieved 10 September 2018.
  5. "What is OpenJUMP - JUMP Pilot Project Wiki". Archived from the original on 2013-12-23. Retrieved 2013-05-27.
  6. Bucher, B., Brasebin, M., Buard, E., Grosso, E., Mustière, S., & Perret, J. (2012). Geoxygene: Built on top of the expertise of the french nma to host and share advanced gi science research results. In Geospatial free and open source software in the 21st century (pp. 21-33). Springer, Berlin, Heidelberg.
  7. Kielhorn, A., Biermann, J., Gervens, T., Rahn, O., & Trautz, D. (2007). Precision Farming mit freiem OpenSource-GIS. Agrarinformatik im Spannungsfeld zwischen Regionalisierung und globalen Wertschöpfungsketten–Referate der 27. GIL Jahrestagung. http://dl.gi.de/bitstream/handle/20.500.12116/22866/107.pdf?sequence=1
  8. http://live.osgeo.org