Jan Myrheim

Last updated

Jan Myrheim (born 14 February 1948) is a Norwegian physicist.

He was born in Røyrvik. [1] He took the cand.real. at the University of Oslo in 1972 and took the dr.philos. degree at the University of Trondheim in 1994. He was then appointed as a professor of theoretical physics at the Norwegian University of Science and Technology. [2] He had then worked at the Norwegian Institute of Technology since 1985, except the years 1987 to 1990. [1]

Together with Jon Magne Leinaas he discovered that in one and two spatial dimensions, there is a possibility of having fractional quantum statistics. [3] This is of particular importance in two dimensions where fractional statistics particles, usually referred to as anyons, play an important role in the theory of the fractional quantum Hall effect.

The duo shared the Fridtjof Nansen Excellent Research Award in Science in 1993.

Related Research Articles

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions and bosons. There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

<span class="mw-page-title-main">Photon</span> Elementary particle or quantum of light

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s. The photon belongs to the class of bosons.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physics at the atomic scale

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Theory of everything</span> Hypothetical physical concept

A theory of everything, final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics. String theory and M-theory have been proposed as theories of everything.

<span class="mw-page-title-main">Satyendra Nath Bose</span> Indian physicist and polymath (1894–1974)

Satyendra Nath Bose was a Bengali mathematician and physicist specializing in theoretical physics. He is best known for his work on quantum mechanics in the early 1920s, in developing the foundation for Bose statistics and the theory of the Bose condensate. A Fellow of the Royal Society, he was awarded India's second highest civilian award, the Padma Vibhushan, in 1954 by the Government of India.

The elementary charge, usually denoted by e is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e. This elementary charge is a fundamental physical constant.

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a "selectron", a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.

<span class="mw-page-title-main">Frank Wilczek</span> American physicist and Nobel laureate (born 1951)

Frank Anthony Wilczek is an American theoretical physicist, mathematician and Nobel laureate. He is currently the Herman Feshbach Professor of Physics at the Massachusetts Institute of Technology (MIT), Founding Director of T. D. Lee Institute and Chief Scientist at the Wilczek Quantum Center, Shanghai Jiao Tong University (SJTU), distinguished professor at Arizona State University (ASU) and full professor at Stockholm University.

In quantum mechanics, the spin–statistics theorem relates the intrinsic spin of a particle to the particle statistics it obeys. In units of the reduced Planck constant ħ, all particles that move in 3 dimensions have either integer spin or half-integer spin.

In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons play a major role in the fractional quantum Hall effect. Non-abelian anyons have not been definitively detected, although this is an active area of research.

In mathematics and theoretical physics, braid statistics is a generalization of the spin statistics of bosons and fermions based on the concept of braid group. While for fermions (Bosons) the corresponding statistics is associated to a phase gain of under the exchange of identical particles, a particle with braid statistics leads to a rational fraction of under such exchange or even a non-trivial unitary transformation in the Hilbert space. A similar notion exists using a loop braid group.

<span class="mw-page-title-main">George Zweig</span> Russian-American physicist

George Zweig is a Russian-American physicist. He was trained as a particle physicist under Richard Feynman. He introduced, independently of Murray Gell-Mann, the quark model. He later turned his attention to neurobiology. He has worked as a Research Scientist at Los Alamos National Laboratory and MIT, and in the financial services industry.

The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of . It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations" Laughlin's explanation only applies to fillings where is an odd integer. The microscopic origin of the FQHE is a major research topic in condensed matter physics.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

Jainendra K. Jain is an Indian-American physicist and the Evan Pugh University Professor and Erwin W. Mueller Professor of Physics at Pennsylvania State University. He is also Infosys Chair Visiting Professor at IISc, Bangalore. Jain is known for his theoretical work on quantum many body systems, most notably for postulating particles known as Composite Fermions.

In quantum mechanics, fractionalization is the phenomenon whereby the quasiparticles of a system cannot be constructed as combinations of its elementary constituents. One of the earliest and most prominent examples is the fractional quantum Hall effect, where the constituent particles are electrons but the quasiparticles carry fractions of the electron charge. Fractionalization can be understood as deconfinement of quasiparticles that together are viewed as comprising the elementary constituents. In the case of spin–charge separation, for example, the electron can be viewed as a bound state of a 'spinon' and a 'chargon', which under certain conditions can become free to move separately.

Jon Magne Leinaas is a Norwegian theoretical physicist.

Jean Zinn-Justin is a French theoretical physicist.

References

  1. 1 2 "Jan Myrheim 50 år 14. februar" (in Norwegian). Norwegian News Agency. 28 January 1998.
  2. "Jan Myrheim". Store norske leksikon (in Norwegian). Retrieved 4 May 2014.
  3. Leinaas, J. M.; Myrheim, J. (January 1977). "On the theory of identical particles". Il Nuovo Cimento B. 37 (1): 1–23. Bibcode:1977NCimB..37....1L. doi:10.1007/BF02727953. ISSN   1826-9877. S2CID   117277704.
Awards
Preceded by Recipient of the Fridtjof Nansen Excellent Research Award in Science
1993
(with Jon Magne Leinaas)
Succeeded by