Jbilet Winselwan meteorite

Last updated
Jbilet Winselwan
Jbilet Winselwan 1.jpg
Type Chondrite
Class Carbonaceous chondrite
Group CM2
Shock stage S1
Weathering grade W1
CountryWestern Sahara
RegionNorthwest Africa
Coordinates 20°40′3″N11°40′38″W / 20.66750°N 11.67722°W / 20.66750; -11.67722
Observed fall No
Found date24 May 2013
TKW 6 kilograms (13 lb)
Strewn field Yes
Jbilet Winselwan 2.jpg

The Jbilet Winselwan meteorite is a CM-type carbonaceous chondrite found in Western Sahara in 2013. [1]

Contents

It is notable for having a low shock stage and weathering grade with a large total known weight. Thus, it provides a large amount of relatively pristine material without the cost premium associated with meteorite falls.

Jbilet Winselwan has been identified as a good analog for C-type asteroid sample return missions, such as Hayabusa2. [2] Further study has also indicated that it represents a unique view of C-type asteroid regolith based on micro-scale dehydration textures found throughout the meteorite. [3] [4]

History

Jbilet Winselwan was reported in early June 2013 by a meteorite hunter from Smara, Western Sahara. Due to inherent delays in communication from the desert, the official date of the find is earlier than the initial reports. The accessibility of the strewn field, being only 7 miles south of Smara, led to a large number of meteorite hunters visiting the area from the summer of 2013 onward. The majority of specimens range from 3 to 200 grams with a few larger samples occurring, the largest being ~900g. Samples reached the market quickly and the official classification was approved by The Meteoritical Society on 12 August 2013. [1]

Classification and composition

Jbilet Winselwan was classified as CM-type carbonaceous chondrite at The National Museum of Natural History, France, and The University of Hassan II Casablanca based on its oxygen-isotopic composition, petrography, and mineral compositions. The meteorite contains CAIs and both type I and type II chondrules ranging up to 1.2mm, with the majority around 200 μm. X-ray diffraction used in classification showed strong peaks for serpentines, broad but weaker peaks for smectites, and a weak broad peak for tochilinite. Major silicate compositions are olivine (Fa0.98±0.44 and Fa25-40) and pyroxene (Fs2.6±1.5 and Fs40-61). Rare kamacite with 5.8 wt% Ni was identified. The oxygen isotopic compositions were measured for two fragments for identification, at δ18O 3.811±0.09 and 5.851±0.016, δ17O -2.446±0.040 and -0.601±0.026, respectively. The isotope values plot well inside the CM chondrite region. [1] [5]

Further study

As a result of its pristinity and relative ease to obtain, Jbilet Winselwan has been extensively studied for a northwest Africa find. The earliest studies identified its extreme degree of brecciation, [1] [3] [5] showing that it likely represents the outermost portion of its parent asteroid; the regolith. This regolith context has been of particular interest, as two missions are currently underway to collect asteroid regolith, Hayabusa2 and OSIRIS-REx. Jbilet Winselwan has specifically been identified as an analog for Hayabusa2, as the mission is targeting a C-type asteroid, the same class as its likely parent body. [2] In this context, the meteorite was further characterized in its major and minor elements, [2] alteration textures, [2] hydrocarbons, [6] and thermal metamorphism. [6]

The extremely brecciated characteristics of Jbilet Winselwan have also led people to use it as an indicator of the thermal and hydration history of its parent body. A single thin section will contain multiple lithologies ranging from typically-hydrated CM chondrite material with tightly packed chondrules to significantly more dehydrated material with few, poorly preserved chondrules. It has been suggested that some Jbilet Winselwan lithologies represent prime examples of post-shock aqueous alteration, [3] including some regions which have formed as a result of cyclical events. [4]

Related Research Articles

<span class="mw-page-title-main">Chondrule</span> Round grain found in chondrites, stony meteorites

A chondrule is a round grain found in a chondrite. Chondrules form as molten or partially molten droplets in space before being accreted to their parent asteroids. Because chondrites represent one of the oldest solid materials within the Solar System and are believed to be the building blocks of the planetary system, it follows that an understanding of the formation of chondrules is important to understand the initial development of the planetary system.

<span class="mw-page-title-main">Chondrite</span> Class of stony meteorites made of round grains

A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies that are captured in the planet's gravity well become the most common type of meteorite by arriving on a trajectory toward the planet's surface. Estimates for their contribution to the total meteorite population vary between 85.7% and 86.2%.

P-type asteroids are asteroids that have low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic rich silicates, carbon and anhydrous silicates, possibly with water ice in their interior. P-type asteroids are found in the outer asteroid belt and beyond. There are about 33 known P-type asteroids, depending on the classification, including 46 Hestia, 65 Cybele, 76 Freia, 87 Sylvia, 153 Hilda, 476 Hedwig and, in some classifications, 107 Camilla.

<span class="mw-page-title-main">Achondrite</span> Stony meteorite that does not contain chondrules

An achondrite is a stony meteorite that does not contain chondrules. It consists of material similar to terrestrial basalts or plutonic rocks and has been differentiated and reprocessed to a lesser or greater degree due to melting and recrystallization on or within meteorite parent bodies. As a result, achondrites have distinct textures and mineralogies indicative of igneous processes.

<span class="mw-page-title-main">Carbonaceous chondrite</span> Class of chondritic meteorites

Carbonaceous chondrites or C chondrites are a class of chondritic meteorites comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%) of meteorite falls.

<span class="mw-page-title-main">Tagish Lake (meteorite)</span> Stony meteorite

The Tagish Lake meteorite fell at 16:43 UTC on 18 January 2000 in the Tagish Lake area in northwestern British Columbia, Canada.

<span class="mw-page-title-main">LL chondrite</span> Group of chondrites with low iron and low metal content

The LL chondrites are a group of stony meteorites, the least abundant group of the ordinary chondrites, accounting for about 10–11% of observed ordinary-chondrite falls and 8–9% of all meteorite falls. The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively. The composition of the Chelyabinsk meteorite is that of a LL chondrite meteorite. The material makeup of Itokawa, the asteroid visited by the Hayabusa spacecraft which landed on it and brought particles back to Earth also proved to be type LL chondrite.

<i>Hayabusa2</i> Japanese space mission to asteroid Ryugu

Hayabusa2 is an asteroid sample-return mission operated by the Japanese state space agency JAXA. It is a successor to the Hayabusa mission, which returned asteroid samples for the first time in June 2010. Hayabusa2 was launched on 3 December 2014 and rendezvoused in space with near-Earth asteroid 162173 Ryugu on 27 June 2018. It surveyed the asteroid for a year and a half and took samples. It left the asteroid in November 2019 and returned the samples to Earth on 5 December 2020 UTC. Its mission has now been extended through at least 2031, when it will rendezvous with the small, rapidly-rotating asteroid 1998 KY26.

<span class="mw-page-title-main">Allende meteorite</span> CV3 carbonaceous chondrite meteorite

The Allende meteorite is the largest carbonaceous chondrite ever found on Earth. The fireball was witnessed at 01:05 on February 8, 1969, falling over the Mexican state of Chihuahua. After it broke up in the atmosphere, an extensive search for pieces was conducted and over 2 tonnes were recovered. The availability of large quantities of samples of the scientifically important chondrite class has enabled numerous investigations by many scientists; it is often described as "the best-studied meteorite in history." The Allende meteorite has abundant, large calcium–aluminum-rich inclusions (CAI), which are among the oldest objects formed in the Solar System.

<span class="mw-page-title-main">Enstatite chondrite</span> Rare type of meteorite

Enstatite chondrites are a rare form of meteorite, rich in the mineral enstatite. Only about 200 E-Type chondrites are currently known, comprising about 2% of the chondrites that fall on Earth. There are two main subtypes: EH and EL, classified based on their iron content.

<span class="mw-page-title-main">101955 Bennu</span> Carbonaceous asteroid

101955 Bennu (provisional designation 1999 RQ36) is a carbonaceous asteroid in the Apollo group discovered by the LINEAR Project on 11 September 1999. It is a potentially hazardous object that is listed on the Sentry Risk Table and has the highest cumulative rating on the Palermo Technical Impact Hazard Scale. It has a cumulative 1-in-1,750 chance of impacting Earth between 2178 and 2290 with the greatest risk being on 24 September 2182. It is named after Bennu, the ancient Egyptian mythological bird associated with the Sun, creation, and rebirth.

CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.

<span class="mw-page-title-main">162173 Ryugu</span> Apollo asteroid

162173 Ryugu, provisional designation 1999 JU3, is a near-Earth object and a potentially hazardous asteroid of the Apollo group. It measures approximately 900 metres (3,000 ft) in diameter and is a dark object of the rare spectral type Cb, with qualities of both a C-type asteroid and a B-type asteroid. In June 2018, the Japanese spacecraft Hayabusa2 arrived at the asteroid. After making measurements and taking samples, Hayabusa2 left Ryugu for Earth in November 2019 and returned the sample capsule to Earth on 5 December 2020. The samples showed the presence of organic compounds, such as uracil (one of the four components in RNA) and vitamin B3.

<span class="mw-page-title-main">Sutter's Mill meteorite</span> Meteorite that fell to Earth on 22 April 2012

The Sutter's Mill meteorite is a carbonaceous chondrite which entered the Earth's atmosphere and broke up at about 07:51 Pacific Time on April 22, 2012, with fragments landing in the United States. The name comes from Sutter's Mill, a California Gold Rush site, near which some pieces were recovered. Meteor astronomer Peter Jenniskens assigned Sutter's Mill (SM) numbers to each meteorite, with the documented find location preserving information about where a given meteorite was located in the impacting meteoroid. As of May 2014, 79 fragments had been publicly documented with a find location. The largest (SM53) weighs 205 grams (7.2 oz), and the second largest (SM50) weighs 42 grams (1.5 oz).

Winonaites are a group of primitive achondrite meteorites. Like all primitive achondrites, winonaites share similarities with chondrites and achondrites. They show signs of metamorphism, partial melting, brecciation and relic chondrules. Their chemical and mineralogical composition lies between H and E chondrites.

This is a glossary of terms used in meteoritics, the science of meteorites.

Mason Gully is an ordinary chondrite of subclass H5, and is the second meteorite to be recovered using the Desert Fireball Network (DFN) camera observatory. One stone weighing 24.5g was observed to fall by the Desert Fireball Network observatory in Western Australia on 13 April 2010 at 10h36m10s UTC. It was recovered by the DFN on 3 November 2010 by Dr. R. Merle and the Fireball network recovery team, and was found 150m from its predicted fall location based upon the observed trajectory and calculated mass.

Asteroidal water is water or water precursor deposits such as hydroxide (OH) that exist in asteroids. The "snow line" of the Solar System lies outside of the main asteroid belt, and the majority of water is expected in minor planets. Nevertheless, a significant amount of water is also found inside the snow line, including in near-earth objects (NEOs).

CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.

<span class="mw-page-title-main">Kaba meteorite</span>

The Kaba meteorite, a 2,601 kilogram stone, struck the outskirts of the Hungarian town of Kaba on 15 April 1857 at around 10 pm. The roughly loaf-shaped meteorite has a maximum diameter of 16.4 centimeters, a minimum diameter of 10 centimeters and a height of 10.8 centimeters. Its mass on the ground must have been about 4 kilograms. Its official name as recorded in the Meteoritical Bulletin is Kaba.

References

  1. 1 2 3 4 "Meteoritical Bulletin Database: Jbilet Winselwan".
  2. 1 2 3 4 King, A. J.; Russell, S. S.; Schofield, P. F.; Humphreys‐Williams, E. R.; Strekopytov, S.; Abernethy, F. A. J.; Verchovsky, A. B.; Grady, M. M. (2018-12-13). "The alteration history of the Jbilet Winselwan CM carbonaceous chondrite: An analog for C‐type asteroid sample return". Meteoritics & Planetary Science. doi: 10.1111/maps.13224 . hdl: 10141/622443 . ISSN   1086-9379.
  3. 1 2 3 Zolensky, Michael; et al. (2016). "Unique View of C Asteroid Regolith from the Jbilet Winselwan CM Chondrite". LPSC Xlvii.
  4. 1 2 Cato, Michael J.; Fagan, Amy L. (2017). "An overview of type II chondrules in the CM chondrite Jbilet Winselwan LPSC" (PDF). LPSC Xlviii.
  5. 1 2 Friend, Pia; Hezel, Dominik C.; Barrat, Jean-Alix; Zipfel, Jutta; Palme, Herbert; Metzler, Knut (2018-06-25). "Composition, petrology, and chondrule-matrix complementarity of the recently discovered Jbilet Winselwan CM2 chondrite". Meteoritics & Planetary Science. 53 (12): 2470–2491. doi: 10.1111/maps.13139 . ISSN   1086-9379.
  6. 1 2 Kato, Hiroki; Yabuta, Hikaru (2019). "Polycyclic aromatic hydrocarbons and aliphatic hydrocarbons in Jbilet Winselwan carbonaceous chondrite : Attempt to evaluate the thermal metamorphism degree on the parent body". Japan Geoscience Union Meeting.