Parent body

Last updated

In meteoritics, a parent body is the celestial body from which originates a meteorite or a class of meteorites. [1]

Contents

Identification

The easiest way to correlate a meteorite with a parent body is when the parent body still exists. This is the case for Lunar and Martian meteorites. Samples from Lunar meteorites can be compared with samples from the Apollo program. Martian meteorites can be compared to analysis carried out by rovers (e.g. Curiosity).

Meteorites can also be compared to spectral classes of asteroids. In order to identify the parent body of a class of meteorites, scientists compare their albedo and spectra with other known bodies. These studies show that some meteorite classes are closely related to some asteroids. The HED meteorites for example are correlated with 4 Vesta. [2] Another, perhaps most useful way to classify meteorites by parent bodies is by grouping them according to composition, with types from each hypothetical parent body clustering on a graph. [3] Meteoriticists have tentatively linked extant meteorites to 100-150 parent bodies; far fewer than the ~1 million main-belt asteroids larger than a kilometer, this apparent sampling bias remains an area of active research. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Phobos (moon)</span> Largest and innermost moon of Mars

Phobos is the innermost and larger of the two natural satellites of Mars, the other being Deimos. The two moons were discovered in 1877 by American astronomer Asaph Hall. It is named after Phobos, the Greek god of fear and panic, who is the son of Ares (Mars) and twin brother of Deimos.

<span class="mw-page-title-main">Martian meteorite</span> Meteorite made of rock originating from Mars

A Martian meteorite is a rock that formed on Mars, was ejected from the planet by an impact event, and traversed interplanetary space before landing on Earth as a meteorite. As of September 2020, 277 meteorites had been classified as Martian, less than half a percent of the 72,000 meteorites that have been classified. The largest complete, uncut Martian meteorite, Taoudenni 002, was recovered in Mali in early 2021. It weighs 14.5 kilograms and is on display at the Maine Mineral & Gem Museum.

<span class="mw-page-title-main">Deimos (moon)</span> Smallest and outermost moon of Mars

Deimos is the smaller and outermost of the two natural satellites of Mars, the other being Phobos. Of similar composition to C and D-type asteroids, Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. Deimos is 23,460 km (14,580 mi) from Mars, much farther than Mars's other moon, Phobos. It is named after Deimos, the Ancient Greek god and personification of dread and terror.

<span class="mw-page-title-main">Lunar meteorite</span> Meteorite that originated from the Moon

A lunar meteorite is a meteorite that is known to have originated on the Moon. A meteorite hitting the Moon is normally classified as a transient lunar phenomenon.

<span class="mw-page-title-main">Achondrite</span> Stony meteorite that does not contain chondrules

An achondrite is a stony meteorite that does not contain chondrules. It consists of material similar to terrestrial basalts or plutonic rocks and has been differentiated and reprocessed to a lesser or greater degree due to melting and recrystallization on or within meteorite parent bodies. As a result, achondrites have distinct textures and mineralogies indicative of igneous processes.

<span class="mw-page-title-main">Planetary protection</span> Guiding principle of a space mission

Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail.

<span class="mw-page-title-main">Sample-return mission</span> Spacecraft mission

A sample-return mission is a spacecraft mission to collect and return samples from an extraterrestrial location to Earth for analysis. Sample-return missions may bring back merely atoms and molecules or a deposit of complex compounds such as loose material and rocks. These samples may be obtained in a number of ways, such as soil and rock excavation or a collector array used for capturing particles of solar wind or cometary debris. Nonetheless, concerns have been raised that the return of such samples to planet Earth may endanger Earth itself.

Kaidun is a meteorite that fell on 3 December 1980 on a Soviet military base near what is now Al-Khuraybah in Yemen. A fireball was observed travelling from the northwest to the southeast, and a single stone weighing about 2 kilograms (4.4 lb) was recovered from a small impact pit. It has been suggested that Kaidun originated from the Martian moon of Phobos, but this is disputed.

<span class="mw-page-title-main">Space weathering</span> Type of weathering

Space weathering is the type of weathering that occurs to any object exposed to the harsh environment of outer space. Bodies without atmospheres take on many weathering processes:

<span class="mw-page-title-main">Crater counting</span>

Crater counting is a method for estimating the age of a planet's surface based upon the assumptions that when a piece of planetary surface is new, then it has no impact craters; impact craters accumulate after that at a rate that is assumed known. Consequently, counting how many craters of various sizes there are in a given area allows determining how long they have accumulated and, consequently, how long ago the surface has formed. The method has been calibrated using the ages obtained by radiometric dating of samples returned from the Moon by the Luna and Apollo missions. It has been used to estimate the age of areas on Mars and other planets that were covered by lava flows, on the Moon of areas covered by giant mares, and how long ago areas on the icy moons of Jupiter and Saturn flooded with new ice.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

<span class="mw-page-title-main">Angrite</span>

Angrites are a rare group of achondrites consisting mostly of Al-Ti bearing diopside, hedenbergite, olivine, anorthite and troilite with minor traces of phosphate and metals. The group is named for the Angra dos Reis meteorite. They are the oldest igneous rocks, with crystallization ages of around 4.56 billion years. Angrites are subdivided into two main groups, the quenched and plutonic angrites. The quenched angrites cooled rapidly upon the surface of the angrite parent body (APB), whereas the plutonic angrites cooled slower, deeper in the crust. The APB is thought to have been a similar size to the asteroid 4 Vesta.

<span class="mw-page-title-main">Nakhlite</span> Group of Martian meteorites

Nakhlites are a group of Martian meteorites, named after the first one, Nakhla meteorite.

<span class="mw-page-title-main">Planetary science</span> Science of planets and planetary systems

Planetary science is the scientific study of planets, celestial bodies and planetary systems and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

<span class="mw-page-title-main">IVB meteorite</span>

IVB meteorites are a group of ataxite iron meteorites classified as achondrites. The IVB group has the most extreme chemical compositions of all iron meteorites, meaning that examples of the group are depleted in volatile elements and enriched in refractory elements compared to other iron meteorites.

This is a glossary of terms used in meteoritics, the science of meteorites.

Catherine Margaret Corrigan, often known as Cari Corrigan, is an American scientist best known as a curator of the meteorite collection at the Smithsonian Institution. She is a scientist in the Department of Mineral Science at the National Museum of Natural History.

Comparative planetary science or comparative planetology is a branch of space science and planetary science in which different natural processes and systems are studied by their effects and phenomena on and between multiple bodies. The planetary processes in question include geology, hydrology, atmospheric physics, and interactions such as impact cratering, space weathering, and magnetospheric physics in the solar wind, and possibly biology, via astrobiology.

Laurence E. Nyquist is an American planetary scientist for the National Aeronautics and Space Administration. He is known for his contributions to knowledge of the chronometry of planetary materials, which have been important in understanding time-scales for accretion, differentiation, and impacts on meteorite parent bodies. His NASA biography also records contributions to the study of noble gases in iron meteorites and lunar samples, radiometric age dating and isotope geochemistry of lunar, Martian, and meteoric samples, and the application of stable isotope methods to biomedical research. He has served as an Associate Editor of Geochimica et Cosmochimica Acta and Proceedings of the Lunar and Planetary Science Conference.

Asteroidal water is water or water precursor deposits such as hydroxide (OH) that exist in asteroids. The "snow line" of the Solar System lies outside of the main asteroid belt, and the majority of water is expected in minor planets. Nevertheless, a significant amount of water is also found inside the snow line, including in near-earth objects (NEOs).

References

  1. J.H. Shirley, R.W. Fairbridge. Encyclopedia of Planetary Sciences, page 111.
  2. Gunter Faure, Teresa M. Mensing. Introduction to Planetary Science: The Geological Perspective. Page 175. ISBN   9781402052330
  3. 1 2 Burbine et al., "Meteoritic Parent Bodies: Their Number and Identification." Accessed May 24, 2014