IIG meteorite

Last updated
IIG meteorites
  Group  
Type Iron
Structural classification Hexahedrite
Class Magmatic
Subgroups
  • None?
Parent body IIG-IIAB
Composition Meteoric iron (kamacite), nickel (4.1 to 4.9 %), much schreibersite (phosphorus), little sulfur
Total known specimens6

IIG meteorites are a group of iron meteorites. The group currently has six members. They are hexahedrites with large amounts of schreibersite. The meteoric iron is composed of kamacite. [1]

Contents

Naming and history

Iron meteorites are designated with a Roman numeral and one or two letters. Classification is based on diagrams in which nickel content of meteoric iron is plotted against trace elements. Clusters in these diagrams are assigned a row (Roman numeral) and a letter in alphabetical order. IIG meteorites are therefore from the second row, cluster G. [2]

The Bellsbank, La Primitiva and Tombigbee meteorites were iron meteorites that were found to have chemical and structural similarities in 1967. [3] Further descriptions were made in 1973 and in 1974 it was proposed that the three meteorites should be grouped into the "Bellsbank Trio" grouplet. [4] [5] The group status, that requires five specimen was filled in 1984 by the Twannberg meteorite and in 2000 by the Guanaco meteorite. [6]

Description

IIG meteorites are hexahedrites. The meteoric iron has a low concentration of Nickel (4.1 to 4.9%) and is exclusively kamacite. IIGs contain large amounts of phosphorus in the form of schreibersite and very low concentrations of sulfur. [1] [6]

Parent body

Phase diagram showing the suspected cooling path of the parent body. While cooling the parent body reached the IIAB field. It then followed the field to the eutectic point where the remaining melt cavities formed the IIG meteorites. Fe-P-phase-diagram-IIG-IIAB-meteorites.svg
Phase diagram showing the suspected cooling path of the parent body. While cooling the parent body reached the IIAB field. It then followed the field to the eutectic point where the remaining melt cavities formed the IIG meteorites.

Trace elements of IIAB and IIG meteorites are offset, which was interpreted as the two groups forming on a separate planetesimal. Other explanations for the offset are melt inmiscibility. This process took place while the planetesimal was cooling off. First meteoric iron crystallized into a network of cavities and channels. Eventually crystallization cut off the channels and made cavities of trapped melt. When the remaining melt reached the eutectic point, the cavities crystallized a mixture of schreibersite and meteoric iron. The matrix of this process would form the IIAB meteorites, while the cavities would form the IIG meteorites. [1]

Specimen

The IIG group currently has 6 meteorites that are assigned to it. The Bellsbank, La Primitiva, Tombigbee, Twannberg, Guanaco and the Auburn meteorite. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Kamacite</span> Alloy of iron and nickel found in meteorites

Kamacite is an alloy of iron and nickel, which is found on Earth only in meteorites. According to the International Mineralogical Association (IMA) it is considered a proper nickel-rich variety of the mineral native iron. The proportion iron:nickel is between 90%:10% and 95%:5%; small quantities of other elements, such as cobalt or carbon may also be present. The mineral has a metallic luster, is gray and has no clear cleavage although its crystal structure is isometric-hexoctahedral. Its density is about 8 g/cm3 and its hardness is 4 on the Mohs scale. It is also sometimes called balkeneisen.

<span class="mw-page-title-main">Octahedrite</span> Structural class of iron meteorites

Octahedrites are the most common structural class of iron meteorites. The structures occur because the meteoric iron has a certain nickel concentration that leads to the exsolution of kamacite out of taenite while cooling.

<span class="mw-page-title-main">Meteorite classification</span> Systems of grouping meteorites based on shared characteristics

In meteoritics, a meteorite classification system attempts to group similar meteorites and allows scientists to communicate with a standardized terminology when discussing them. Meteorites are classified according to a variety of characteristics, especially mineralogical, petrological, chemical, and isotopic properties.

<span class="mw-page-title-main">Willamette Meteorite</span> Iron-nickel meteorite found in Oregon, U.S.

The Willamette Meteorite, officially named Willamette and originally known as Tomanowos by the Clackamas Chinook Native American tribe, is an iron-nickel meteorite found in the U.S. state of Oregon. It is the largest meteorite found in the United States and the sixth largest in the world. There was no impact crater at the discovery site; researchers believe the meteorite landed in what is now Canada or Montana, and was transported as a glacial erratic to the Willamette Valley during the Missoula Floods at the end of the last Ice Age. It has long been held sacred by indigenous peoples of the Willamette Valley, including the federally recognized Confederated Tribes of the Grand Ronde Community of Oregon (CTGRC).

<span class="mw-page-title-main">Micrometeorite</span> Meteoroid that survives Earths atmosphere

A micrometeorite is a micrometeoroid that has survived entry through the Earth's atmosphere. Usually found on Earth's surface, micrometeorites differ from meteorites in that they are smaller in size, more abundant, and different in composition. The IAU officially defines meteoroids as 30 micrometers to 1 meter; micrometeorites are the small end of the range (~submillimeter). They are a subset of cosmic dust, which also includes the smaller interplanetary dust particles (IDPs).

<span class="mw-page-title-main">Hexahedrite</span>

Hexahedrites are a structural class of iron meteorite. They are composed almost exclusively of the nickel–iron alloy kamacite and are lower in nickel content than the octahedrites. The nickel concentration in hexahedrites is always below 5.8% and only rarely below 5.3%.

<span class="mw-page-title-main">Iron meteorite</span> Meteorite composed of iron-nickel alloy called meteoric iron

Iron meteorites, also called siderites or ferrous meteorites, are a type of meteorite that consist overwhelmingly of an iron–nickel alloy known as meteoric iron that usually consists of two mineral phases: kamacite and taenite. Most iron meteorites originate from cores of planetesimals, with the exception of the IIE iron meteorite group

<span class="mw-page-title-main">Heazlewoodite</span>

Heazlewoodite, Ni3S2, is a rare sulfur-poor nickel sulfide mineral found in serpentinitized dunite. It occurs as disseminations and masses of opaque, metallic light bronze to brassy yellow grains which crystallize in the trigonal crystal system. It has a hardness of 4, a specific gravity of 5.82. Heazlewoodite was first described in 1896 from Heazlewood, Tasmania, Australia.

Magmatic water, also known as juvenile water, is an aqueous phase in equilibrium with minerals that have been dissolved by magma deep within the Earth's crust and is released to the atmosphere during a volcanic eruption. It plays a key role in assessing the crystallization of igneous rocks, particularly silicates, as well as the rheology and evolution of magma chambers. Magma is composed of minerals, crystals and volatiles in varying relative natural abundance. Magmatic differentiation varies significantly based on various factors, most notably the presence of water. An abundance of volatiles within magma chambers decreases viscosity and leads to the formation of minerals bearing halogens, including chloride and hydroxide groups. In addition, the relative abundance of volatiles varies within basaltic, andesitic, and rhyolitic magma chambers, leading to some volcanoes being exceedingly more explosive than others. Magmatic water is practically insoluble in silicate melts but has demonstrated the highest solubility within rhyolitic melts. An abundance of magmatic water has been shown to lead to high-grade deformation, altering the amount of δ18O and δ2H within host rocks.

Adhi Kot is a meteorite that fell on 1 May 1919 in the Punjab region, now in Pakistan.

<span class="mw-page-title-main">IAB meteorite</span> Group of iron meteorites

IAB meteorites are a group of iron meteorites according to their overall composition and a group of primitive achondrites because of silicate inclusions that show a strong affinity to winonaites and chondrites.

<span class="mw-page-title-main">IIICD meteorite</span>

IIICD meteorites are a group of primitive achondrites. They are classified in a clan together with the IAB meteorites and the winonaites.

<span class="mw-page-title-main">IVB meteorite</span> Type of iron meteorite

IVB meteorites are a group of ataxite iron meteorites classified as achondrites. The IVB group has the most extreme chemical compositions of all iron meteorites, meaning that examples of the group are depleted in volatile elements and enriched in refractory elements compared to other iron meteorites.

The Bellsbank meteorite is a hexahedrite iron meteorite with abundant schreibersite. It is classified as a member of the IIG group. It was found in Bellsbank, South Africa in 1955.

The Twannberg meteorite is a hexahedrite iron meteorite. It is the only meteorite of the IIG group found in Europe and the largest meteorite ever found in Switzerland.

<span class="mw-page-title-main">Stony-iron meteorite</span> Meteorites that consist of nearly equal parts of meteoric iron and silicates

Stony-iron meteorites or siderolites are meteorites that consist of nearly equal parts of meteoric iron and silicates. This distinguishes them from the stony meteorites, that are mostly silicates, and the iron meteorites, that are mostly meteoric iron.

<span class="mw-page-title-main">Nonmagmatic meteorite</span> Deprecated term formerly used in meteoritics

Nonmagmatic meteorite is a deprecated term formerly used in meteoritics to describe iron meteorites that were originally thought to have not formed by igneous processes, to differentiate them from the magmatic meteorites, produced by the crystallization of a metal melt. The concept behind this was developed in the 1970s, but it was quickly realized that igneous processes actually play a vital role in the formation of the so-called "nonmagmatic" meteorites. Today, the terms are still sometimes used, but usage is discouraged because of the ambiguous meanings of the terms magmatic and nonmagmatic. The meteorites that were described to be nonmagmatic are now understood to be the product of partial melting and impact events and are grouped with the primitive achondrites and the achondrites.

This is a glossary of terms used in meteoritics, the science of meteorites.

<span class="mw-page-title-main">IIAB meteorites</span> Type of iron meteorite

IIAB meteorites are a group of iron meteorites. Their structural classification ranges from hexahedrites to octahedrites. IIABs have the lowest concentration of nickel of all iron meteorite groups. Most iron meteorites are derived from the metallic planetary cores of their respective parent bodies, but in the case of the IIABs the metallic magma separated to form not only this meteorite group but also the IIG group.

Cliftonite is a natural form of graphite that occurs as small octahedral inclusions in iron-containing meteorites. It typically accompanies kamacite, and more rarely schreibersite, cohenite or plessite.

References

  1. 1 2 3 4 Wasson, John T.; Choe, Won-Hie (31 July 2009). "The IIG iron meteorites: Probable formation in the IIAB core". Geochimica et Cosmochimica Acta. 73 (16): 4879–4890. doi:10.1016/j.gca.2009.05.062.
  2. McSween, Harry Y. (1999). Meteorites and their parent planets (Sec. ed.). Cambridge: Cambridge Univ. Press. ISBN   978-0521587518.
  3. Wasson, John T.; Kimbeblin, Jerome (1 October 1967). "The chemical classification of iron meteorites—II. Irons and pallasites with germanium concentrations between 8 and 100 ppm". Geochimica et Cosmochimica Acta. 31 (10): 2065–2093. doi:10.1016/0016-7037(67)90143-3.
  4. Scott, Edward R.D; Wasson, John T; Buchwald, V.F (31 July 1973). "The chemical classification of iron meteorites—VII. A reinvestigation of irons with Ge concentrations between 25 and 80 ppm". Geochimica et Cosmochimica Acta. 37 (8): 1957–1983. doi:10.1016/0016-7037(73)90151-8.
  5. Wasson, John T. (1974). Meteorites : classification and properties. Berlin: Springer-Verlag. ISBN   978-0387067445.
  6. 1 2 Hofmann, Beda A.; Lorenzetti, Silvio; Eugster, Otto; Krähenbühl, Urs; Herzog, Gregory; Serefiddin, Feride; Gnos, Edwin; Eggimann, Manuel; Wasson, John T. (1 February 2009). "The Twannberg (Switzerland) IIG iron meteorites: Mineralogy, chemistry, and CRE ages". Meteoritics & Planetary Science. 44 (2): 187–199. doi: 10.1111/j.1945-5100.2009.tb00727.x .
  7. "Meteoritical Bulletin Database". Meteoritical Society. Retrieved 17 December 2012.