IIE iron meteorite

Last updated
IIE
  Group  
Weekeroo Station, Australia, Iron, IIE-an - Center for Meteorite Studies - Arizona State University - Tempe, AZ - DSC05782.JPG
The Weekeroo Station meteorite, an IIE iron meteorite
Type Iron
Structural classification Octahedrite
Class Nonmagmatic
Parent body Probably 6 Hebe
Total known specimens21 as of 2009

The iron meteorites of the IIE chemical type are octahedrites of various coarseness, most of which contain numerous inclusions of recrystallized stony silicates.

Iron meteorite meteorite composed of iron-nickel alloy called meteoric iron

Iron meteorites are meteorites that consist overwhelmingly of an iron–nickel alloy known as meteoric iron that usually consists of two mineral phases: kamacite and taenite. Iron meteorites originate from cores of planetesimals.

Octahedrite Structural class of iron meteorites

Octahedrites are the most common structural class of iron meteorites. The structures occur because the meteoric iron has a certain nickel concentration that leads to the exsolution of kamacite out of taenite while cooling.

Inclusion (mineral) inclusions in minerals

In mineralogy, an inclusion is any material that is trapped inside a mineral during its formation.

Contents

Composition and origin

They have mineral compositions and oxygen isotope ratios very similar to the H chondrites, which makes it probable that they originate from the same parent body. The best candidate for this parent body is the S-type asteroid 6 Hebe. [1] Unlike most iron meteorites, the type IIE are thought to have been melted out of the chondritic surface of the parent asteroid by impacts during its early history.

Oxygen Chemical element with atomic number 8

Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O
2
. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. As compounds including oxides, the element makes up almost half of the Earth's crust.

Isotope nuclides having the same atomic number but different mass numbers

Isotopes are variants of a particular chemical element which differ in neutron number, and consequently in nucleon number. All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom.

H chondrite

The H type ordinary chondrites are the most common type of meteorite, accounting for approximately 40% of all those catalogued, 46% of the ordinary chondrites, and 44% of the chondrites. The ordinary chondrites are thought to have originated from three parent asteroids, whose fragments make up the H chondrite, L chondrite and LL chondrite groups respectively.

Rarity

It is a rare type with 21 known members as of 2009. [2]

See also

Related Research Articles

Kamacite An alloy of iron and nickel found in meteorites

Kamacite is an alloy of iron and nickel, which is found on Earth only in meteorites. The proportion iron:nickel is between 90:10 and 95:5; small quantities of other elements, such as cobalt or carbon may also be present. The mineral has a metallic luster, is gray and has no clear cleavage although its crystal structure is isometric-hexoctahedral. Its density is about 8 g/cm3 and its hardness is 4 on the Mohs scale. It is also sometimes called balkeneisen.

The ultimate goal of meteorite classification is to group all meteorite specimens that share a common origin on a single, identifiable parent body. This could be a planet, asteroid, Moon, or other current Solar System object, or one that existed some time in the past. However, with a few exceptions, this goal is beyond the reach of current science, mostly because there is inadequate information about the nature of most Solar System bodies to achieve such a classification. Instead, modern meteorite classification relies on placing specimens into "groups" in which all members share certain key physical, chemical, isotopic, and mineralogical properties consistent with a common origin on a single parent body, even if that body is unidentified. Several meteorite groups classified this way may come from a single, heterogeneous parent body or a single group may contain members that came from a variety of very similar but distinct parent bodies. As such information comes to light, the classification system will most likely evolve.

Chondrule round grain found in chondrites

A Chondrule is a round grain found in a chondrite. Chondrules form as molten or partially molten droplets in space before being accreted to their parent asteroids. Because chondrites represent one of the oldest solid materials within the Solar System and are believed to be the building blocks of the planetary system, it follows that an understanding of the formation of chondrules is important to understand the initial development of the planetary system.

Chondrite class of stony meteorites

Chondrites are stony (non-metallic) meteorites that have not been modified due to melting or differentiation of the parent body. They are formed when various types of dust and small grains that were present in the early solar system accreted to form primitive asteroids. They are the most common type of meteorite that falls to Earth with estimates for the proportion of the total fall that they represent varying between 85.7% and 86.2%. Their study provides important clues for understanding the origin and age of the Solar System, the synthesis of organic compounds, the origin of life and the presence of water on Earth. One of their characteristics is the presence of chondrules, which are round grains formed by distinct minerals, that normally constitute between 20% and 80% of a chondrite by volume.

6 Hebe main-belt asteroid

Hebe is a large main-belt asteroid, containing around half a percent of the mass of the belt. However, due to its apparently high bulk density, Hebe does not rank among the top twenty asteroids by volume. This high bulk density suggests an extremely solid body that has not been impacted by collisions, which is not typical of asteroids of its size – they tend to be loosely-bound rubble piles.

8 Flora main-belt asteroid

Flora is a large, bright main-belt asteroid. It is the innermost large asteroid: no asteroid closer to the Sun has a diameter above 25 kilometres or two-elevenths that of Flora itself, and not until the tiny 149 Medusa was discovered was a single asteroid orbiting at a closer mean distance known. It is the seventh-brightest asteroid with a mean opposition magnitude of +8.7. Flora can reach a magnitude of +7.9 at a favorable opposition near perihelion, such as occurred in November 2007. Flora may be the residual core of an intensely heated, thermally evolved, and magmatically differentiated planetesimal which was subsequently disrupted.

K-type asteroids are relatively uncommon asteroids with a moderately reddish spectrum shortwards of 0.75 μm, and a slight bluish trend longwards of this. They have a low albedo. Their spectrum resembles that of CV and CO meteorites.

Achondrite meteorites that show signs of differentiation (no chondrules)

An achondrite is a stony meteorite that does not contain chondrules. It consists of material similar to terrestrial basalts or plutonic rocks and has been differentiated and reprocessed to a lesser or greater degree due to melting and recrystallization on or within meteorite parent bodies. As a result, achondrites have distinct textures and mineralogies indicative of igneous processes.

Carbonaceous chondrite class of chondritic meteorites

Carbonaceous chondrites or C chondrites are a class of chondritic meteorites comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%) of meteorite falls.

Ordinary chondrite

The ordinary chondrites are a class of stony chondritic meteorites. They are by far the most numerous group and comprise about 87% of all finds. Hence, they have been dubbed "ordinary". The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively.

L chondrite

The L type ordinary chondrites are the second most common group of meteorites, accounting for approximately 35% of all those catalogued, and 40% of the ordinary chondrites. The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively.

LL chondrite Group of chondrites with low iron and low metal content

The LL chondrites are a group of stony meteorites, the least abundant group of the ordinary chondrites, accounting for about 10–11% of observed ordinary-chondrite falls and 8–9% of all meteorite falls. The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively. The composition of the Chelyabinsk meteor is that of a LL chondrite meteorite. The material makeup of Itokawa, the asteroid visited by the Hayabusa spacecraft which landed on it and brought particles back to Earth also proved to be type LL chondrite.

Enstatite chondrite

Enstatite chondrites are a rare form of meteorite thought to comprise only about 2% of the chondrites that fall on Earth. Only about 200 E-Type chondrites are currently known.

CI chondrite

CI chondrites, sometimes C1 chondrites, are a group of rare stony meteorites belonging to the carbonaceous chondrites. Samples have been discovered in France, Canada, India, and Tanzania. Compared to all the meteorites found so far, their chemical composition most closely resembles the elemental distribution in the sun's photosphere.

Lodranite

Lodranites are a small group of primitive achondrite meteorites that consists of meteoric iron and silicate minerals. Olivine and pyroxene make up most of the silicate minerals. Like all primitive achondrites lodranites share similarities with chondrites and achondrites.

The Itqiy meteorite is an enstatite-rich stony-iron meteorite. It is classified as an enstatite chondrite of the EH group that was nearly melted and is therefore very unusual for that group. Other classifications have been proposed and are an ongoing scientific debate.

This is a glossary of terms used in meteoritics, the science of meteorites.

Ordovician meteor event

The Ordovician meteor event was a dramatic increase in the rate at which L chondrite meteorites fell to Earth during the Middle Ordovician period, about 467.5 million years ago. This is indicated by abundant fossil L chondrite meteorites in a quarry in Sweden and enhanced concentrations of ordinary chondritic chromite grains in sedimentary rocks from this time. This temporary increase in the impact rate was most likely caused by the destruction of the L-chondrite parent body 468 ± 0.3 million years ago having scattered fragments into Earth-crossing orbits, a chronology which is also supported by shock ages in numerous L-chondrite meteorites that fall to Earth today. It has been hypothesized that this influx contributed to, or possibly even instigated, the Great Ordovician Biodiversification Event, although this has been refuted.

References