Jesse Eugene Russell | |
---|---|
Born | |
Education | B.S.E.E., Tennessee State University; M.S.E.E., Stanford University |
Occupation | Inventor |
Employer(s) | incNETWORKS, Inc. |
Known for | Electrical Engineering; Digital Cellular Technology |
Title | Chief Executive Officer |
Spouse | Amanda O. Russell |
Children |
|
Parents |
|
Jesse Eugene Russell (born April 26, 1948) is an American inventor. He was trained as an electrical engineer at Tennessee State University and Stanford University, and worked in the field of wireless communication for over 20 years. He holds patents and continues to invent and innovate in the emerging area of next generation broadband wireless networks, technologies and services, often referred to as 4G. Russell was inducted into the US National Academy of Engineering for his contributions to the field of wireless communication. He pioneered the field of digital cellular communication in the 1980s through the use of high power linear amplification and low bit rate voice encoding technologies and received a patent in 1992 for his work in the area of digital cellular base station design.
Russell is Chairman and CEO of incNETWORKS, Inc., a New Jersey–based Broadband Wireless Communications Company focused on 4th Generation (4G) Broadband Wireless Communications Technologies, Networks and Services.
Jesse Eugene Russell was born April 26, 1948, in Nashville, Tennessee, in the United States of America into a large African-American family with eight brothers and two sisters. He is the son of Charles Albert Russell and Mary Louise Russell. His early childhood was spent in economically and socially deprived neighborhoods within the inner-city of Nashville. During his early years, he focused on athletics and not academics. A key turning point in Russell's life was the opportunity to attend a summer educational program at Fisk University [1] in Nashville, Tennessee. Russell participated in this educational opportunity and began his academic and intellectual pursuits. Russell continued his education at Tennessee State University [2] where he focused on electrical engineering. A Bachelor of Science Degree (BSEE) in Electrical Engineering was conferred in 1972 from Tennessee State University. As a top honor student in the School of Engineering, Russell became the first African American to be hired by AT&T Bell Laboratories directly from a Historically Black College or University (HBCUs) [3] and subsequently became the first African-American in the United States to be selected as the Eta Kappa Nu Outstanding Young Electrical Engineer of the Year in 1980. [4] Russell continued his academic pursuits and earned a Master of Electrical Engineering (MSEE) degree from Stanford University in 1973. [5]
Russell's innovations in wireless communication systems, architectures and technology related to radio access networks, end-user devices and in-building wireless communication systems have fundamentally changed the wireless communication industry. Russell is known for his invention of the digital cellular base station and the fibre optic microcell utilizing high power linear amplifier technology and digital modulation techniques, which enabled new digital services for cellular mobile users.
Russell has over 100 patents granted or in process, such as these in the table.
Patent No. | Description |
---|---|
7,437,158 | Advanced multi-network client device for wideband multimedia access to private and public wireless networks [6] |
7,120,139 | Broadband cable telephony network architecture IP ITN network architecture reference model [7] |
5,724,665 | Wireless communication base station [8] |
5,655,003 | Wireless terminal having digital radio processing with automatic communication system selection capability [9] |
5,608,780 | Wireless communication system having base units which extracts channel and setup information from nearby base units [10] |
5,257,397 | Mobile data telephone [11] |
5,084,869 | Base station for mobile radio telecommunications systems [12] |
Russell joined Bell Labs as a Member of the Technical Staff. He was one of the first designers to use a microprocessor in the design of equipment for use in the telecommunication network for monitoring and tracking calling patterns within the Bell System Network. The system was referred to as the traffic data collection systems, which using microprocessor-based portable data terminals for interfacing to electromechanical switching systems.
Russell served in the following positions; Director of the AT&T Cellular Telecommunication Laboratory (Bell Labs), Vice President of Advanced Wireless Technology Laboratory (Bell Labs), Chief Technical Officer for the Network Wireless Systems Business Unit (Bell Labs), Chief Wireless Architect of AT&T, and Vice President of Advanced Communications Technologies for AT&T Laboratories (formerly a part of Bell Labs).
When he was the Director of the AT&T Cellular Telecommunication Laboratory, this Bell Labs Group was credited with the invention of cellular radio technology and received the United States' Medal of Technology for the invention.
Russell continued to develop his expertise as he established and led an Innovation Center focused on Applied Research in Advanced Communication Technologies that enabling AT&T to extend its existing portfolio of services and expand into new businesses and markets. As a key decision-maker in the selection and development of emerging communications technologies, Russell's efforts lead to the rapid realization of new access network platforms that enable AT&T to expand its broadband communication network options (i.e., Specialization: Cable Access Networks, DSL Access Networks, Power-line Carrier Access Networks, Fixed Wireless Access Networks, Satellite Access Networks and Broadband Wireless Communications Networks). The applications of these access technologies were one of the keys in expanding AT&T's interest in re-building it local access services business.
A personal communications service (PCS) is set of communications capabilities that provide a combination of terminal mobility, personal mobility, and service profile management. This class of services comprises several types of wireless voice or wireless data communications systems, typically incorporating digital technology, providing services similar to advanced cellular mobile or paging services. In addition, PCS can also be used to provide other wireless communications services, including services that allow people to place and receive communications while away from their home or office, as well as wireless communications to homes, office buildings and other fixed locations. Described in more commercial terms, PCS is a generation of wireless cellular-phone technology, that combines a range of features and services surpassing those available in analogue- and first-generation (2G) digital-cellular phone systems, providing a user with an all-in-one wireless phone, paging, messaging, and data service.
A telephone, colloquially referred to as a phone, is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into electronic signals that are transmitted via cables and other communication channels to another telephone which reproduces the sound to the receiving user. The term is derived from Ancient Greek: τῆλε, romanized: tēle, lit. 'far' and φωνή, together meaning distant voice.
Wireless communication is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth, or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, such as light and magnetic or electric fields, or the use of sound.
Internet access is a facility or service that provides connectivity for a computer, a computer network, or other network device to the Internet, and for individuals or organizations to access or use applications such as email and the World Wide Web. Internet access is offered for sale by an international hierarchy of Internet service providers (ISPs) using various networking technologies. At the retail level, many organizations, including municipal entities, also provide cost-free access to the general public.
A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.
The history of mobile phones covers mobile communication devices that connect wirelessly to the public switched telephone network.
The history of telecommunication began with the use of smoke signals and drums in Africa, Asia, and the Americas. In the 1790s, the first fixed semaphore systems emerged in Europe. However, it was not until the 1830s that electrical telecommunication systems started to appear. This article details the history of telecommunication and the individuals who helped make telecommunication systems what they are today. The history of telecommunication is an important part of the larger history of communication.
Martin Cooper is an American engineer. He is a pioneer in the wireless communications industry, especially in radio spectrum management, with eleven patents in the field.
Ian F. Akyildiz is a Turkish-American electrical engineer. He received his BS, MS, and PhD degrees in Electrical and Computer Engineering from the University of Erlangen-Nürnberg, Germany, in 1978, 1981 and 1984, respectively. Currently, he is the President and CTO of the Truva Inc. since March 1989. He retired from the School of Electrical and Computer Engineering (ECE) at Georgia Tech in 2021 after almost 35 years service as Ken Byers Chair Professor in Telecommunications and Chair of the Telecom group.
Amos Edward Joel Jr. was an American electrical engineer, known for several contributions and over seventy patents related to telecommunications switching systems.
Edholm's law, proposed by and named after Phil Edholm, refers to the observation that the three categories of telecommunication, namely wireless (mobile), nomadic and wired networks (fixed), are in lockstep and gradually converging. Edholm's law also holds that data rates for these telecommunications categories increase on similar exponential curves, with the slower rates trailing the faster ones by a predictable time lag. Edholm's law predicts that the bandwidth and data rates double every 18 months, which has proven to be true since the 1970s. The trend is evident in the cases of Internet, cellular (mobile), wireless LAN and wireless personal area networks.
The IEEE Eric E. Sumner Award is a Technical Field Award of the IEEE. It was established by the IEEE board of directors in 1995. It may be presented annually, to an individual or a team of not more than three people, for outstanding contributions to communications technology. It is named in honor of Eric E. Sumner, 1991 IEEE President.
The first smart antennas were developed for military communications and intelligence gathering. The growth of cellular telephone in the 1980s attracted interest in commercial applications. The upgrade to digital radio technology in the mobile phone, indoor wireless network, and satellite broadcasting industries created new opportunities for smart antennas in the 1990s, culminating in the development of the MIMO technology used in 4G wireless networks.
Dr. Hui Liu is a Chinese American professor and an entrepreneur in the field of wireless and satellite communications. He is a prolific researcher with more than 200 scholarly articles and 2 textbooks, and a creative innovator with 67 awarded patents in areas ranging from wireless systems, signal processing, satellite networks, to machine learning. He has more than 12,000 paper citations and an H-index of 56 as of 2018. Dr. Liu is also one of the principal designers of three industrial standards on cellular networks, terrestrial broadcasting, and satellite communications, respectively.
Bernhard H. Walke is a pioneer of mobile Internet access and professor emeritus at RWTH Aachen University in Germany. He is a driver of wireless and mobile 2G to 5G cellular radio networks technologies. In 1985, he proposed a local cellular radio network comprising technologies in use today in 2G, 4G and discussed for 5G systems. For example, self-organization of a radio mesh network, integration of circuit- and packet switching, de-centralized radio resource control, TDMA/spread spectrum data transmission, antenna beam steering, spatial beam multiplexing, interference coordination, S-Aloha based multiple access and demand assigned traffic channels, mobile broadband transmission using mm-waves, and multi-hop communication.
Victor Bahl is an American Technical Fellow and CTO of Azure for Operators at Microsoft. He started networking research at Microsoft. He is known for his research contributions to white space radio data networks, radio signal-strength based indoor positioning systems, multi-radio wireless systems, wireless network virtualization, edge computing, and for bringing wireless links into the datacenter. He is also known for his leadership of the mobile computing community as the co-founder of the ACM Special Interest Group on Mobility of Systems, Users, Data, and Computing (SIGMOBILE). He is the founder of international conference on Mobile Systems, Applications, and Services Conference (MobiSys), and the founder of ACM Mobile Computing and Communications Review, a quarterly scientific journal that publishes peer-reviewed technical papers, opinion columns, and news stories related to wireless communications and mobility. Bahl has received important awards; delivered dozens of keynotes and plenary talks at conferences and workshops; delivered over six dozen distinguished seminars at universities; written over hundred papers with more than 65,000 citations and awarded over 100 US and international patents. He is a Fellow of the Association for Computing Machinery, IEEE, and American Association for the Advancement of Science.
Robert W. Heath Jr. is an American electrical engineer, researcher, educator, wireless technology expert, and a professor in the Department of Electrical and Computer Engineering at the University of California, San Diego. He is also the president and CEO of MIMO Wireless Inc. He was the founding director of the Situation Aware Vehicular Engineering Systems initiative.
Richard D. Gitlin is an electrical engineer, inventor, research executive, and academic whose principal places of employment were Bell Labs and the University of South Florida (USF). He is known for his work on digital subscriber line (DSL), multi-code CDMA, and smart MIMO antenna technology all while at Bell Labs.
Victor B. Lawrence is a Ghanaian-American engineer credited with seminal contributions in digital signal processing for multimedia communications. During his 30-plus-year tenure at Bell Laboratories, Lawrence made extensive and fundamental personal contributions to voice, data, audio and video communications. He led numerous projects that significantly improved or enhanced every phase in the evolution of early low-speed and today's high-speed data communications. He is a Research Professor and Director of the Center for Intelligent Networked Systems (iNetS) at Stevens Institute of Technology, where he also served as Associate Dean. He was inducted into the National Inventors Hall of Fame in 2016. He is a Member of the National Academy of Engineering, a Fellow of the IEEE for contributions to the understanding of quantization effects in digital signal processors and the applications of digital signal processing to data communications, a Fellow of AT&T Bell Labs, and a Charter Fellow of the National Academy of Inventors.
Anthony Acampora is a professor emeritus of Electrical and Computer Engineering as well as the founder of the Center for Wireless Communications at the University of California, San Diego.