Ji-Feng Zhang

Last updated

Ji-Feng Zhang (born 1963) was born in Shandong, China. He is currently the vice-chair of the technical board of the International Federation of Automatic Control (IFAC), the vice-president of the Systems Engineering Society of China (SESC), the vice-president of the Chinese Association of Automation (CAA), the chair of the technical committee on Control Theory (CAA), and the editor-in-chief for both All About Systems and Control and the Journal of Systems Science and Mathematical Sciences.

Contents

Biography

Ji-Feng Zhang was born in September 1963, Shandong, China. He received the B.S. degree in mathematics, from Shandong University in 1985, and M.S. and Ph.D. in control theory and stochastic systems, from Institute of Systems Science (ISS), Chinese Academy of Sciences (CAS) in 1988 and 1991, respectively. From November 1991 to December 1992, he was a postdoctoral fellow was with McGill University, Canada. From December 1996 to February 1998, he was with the Chinese University of Hong Kong. Since 1985 he has been with the ISS, CAS, where he is now a Guan Zhapzhi Chair Professor of the Academy of Mathematics and System Sciences (AMSS), and the director of the ISS.

Contributions to the field

Job history

Zhang has served as a vice-chair of the technical board of IFAC (2014–present), convener of Systems Science Discipline, Academic Degree Committee of the State Council, China (2009–present), vice-president of the Systems Engineering Society of China (2010–present), vice- president of the Chinese Association of Automation (CAA, 2014–present), chair of the Technical Committee on Control Theory (TCCT), CAA (2010–present), standing member of the Chinese Mathematical Society (2008–2015), vice-president of the Beijing Mathematical Society, China (2006–2013), member of the board of governors, IEEE Control Systems Society (2013), member of the steering committee, Asian Control Association, (2009–2014), vice-general secretary of CAA (2002–2008), vice-chair of TCCT, CAA (2002–2007), general secretary of TCCT, CAA (1993–2002), senior member of IEEE (1997–2013), member of the IFAC Technical Committee on Modeling, identification and Signal Processing (2009–present).

He also has been a general co-chair of the 32nd and 33rd Chinese Control Conference (2013, 2014), [1] [2] program chair/co-chair of the 17th IFAC Symposium on System Identification (2015), [3] the 30th Chinese Control Conference (2011), the 9th World Congress on Intelligent Control and Automation, Beijing, China (2012), the IEEE International Conference on Control Applications, part of the IEEE Multi-Conference on Systems and Control (2012), vice-chair of the 20th IFAC World Congress (2017), [4] and an organizing committee co-chair of the 21st-26th Chinese Control Conferences (2002–2007), the 1st-4th Chinese-Swedish Conference on Control (2003–2008), the 1st-8th Conference on Frontier Problems in Systems and Control (2000–2008), and a finance co-chair of the 48th Conference on Decision and Control (2009).

He is/was the founding editor-in-chief of All About Systems and Control (2014–present), [5] editor-in-chief of the Journal of Systems Science and Mathematical Sciences (2014–present), managing editor of Journal of Systems Science and Complexity (2007–2014), deputy editor-in-chief of the following journals: Science China: Information Sciences (2014–present), Scientia Sinica: Informationis (2014–present), Journal of Systems Science and Mathematical Sciences (2004–2013), Acta Automatica Sinica (2005–2010), Control Theory and Applications (2008–2013), Systems Engineering: Theory and Practice (2011–present); and associate editor or an editorial board member of the following journals: IEEE Transactions on Automatic Control (2007–2009), SIAM Journal on Control and Optimization (2008–2013), Aerospace Control and Application (2008–present), Mathematics in Practice and Theory (2006–2013), Acta Automatica Sinica (1999–2010), Control Theory and Applications (2003–2008), Journal of Control Theory and Applications (2003–2008), and the Journal of Shandong University(Engineering Science) (2011–2015).

Research areas

Zhang’s current research interests are system identification, adaptive control, stochastic systems, and multi-agent systems.

System identification

He made original contributions on system identification, including the estimation of the orders, time-delays and parameters of stochastic systems. He gave a criterion for time-delay estimate, with which one can get a strong consistent time-delay estimate. He with co-authors initiated the research on the parameter identification and adaptive control of the systems with quantized observations, and investigated the optimal adaptive control and identification errors, time complexity, optimal input design, and impact of disturbances and unmodeled dynamics on identification accuracy and complexity in both stochastic and deterministic frameworks. With a series of significant results, he has established a solid framework for the identification and adaptive control of uncertainty systems with quantized information. This is of great importance for many practical systems, especially, when digital communications are needed.

Adaptive control

He investigated the capability issues of robust and adaptive control in dealing with uncertainty, and revealed that to capture the intrinsic limitations of adaptive control, it is necessary to use sup-types of transient and persistent performance, rather than limsup-types which reflect only asymptotic behavior of a system. This indicates that intimate interaction and inherent conflict between identification and control result in a certain performance lower bound which does not approach the nominal performance even when the system varies very slowly. For nonlinear hybrid stochastic systems with unknown jump-Markov parameters, he with co-authors used the Wonham nonlinear filter to estimate the unknown parameters and presented an estimation error bound, which is a basic tool and plays an important role in performance analysis of adaptive control of nonlinear hybrid stochastic systems. He also attacked a series of hard problems related on global output-feedback control of nonlinear stochastic systems with inverse dynamics, including practical output-feedback risk-sensitive control, robust adaptive stabilization, small-gain theorem of general nonlinear stochastic systems. Different from the existing literature, the systems considered in his work are so complicated that renders any control design for them is much difficult. He developed a set of predominant methods and obtained many innovative results. The work represents an accomplishment for both the field of stochastic nonlinear stabilization and the backstepping method.

Stochastic multi-agent systems

In control of stochastic multi-agent systems, Zhang thoroughly studied the interaction of interest coupled decision-makers and the uncertainty of individual behavior, which is the prominent characteristic of multi-agent systems (MASs). He made a systematic study of the sample path behavior of the closed-loop system in relation to Nash Equilibria (NE) and a substantial contribution to the developing theory of Nash Certainty Equivalence (NCE) for large population stochastic dynamic games. He introduced the concepts of asymptotic Nash- equilibrium in probability and almost surely, and elucidated the relationship between these concepts, which provides necessary tools for analyzing the optimality of the decentralized control laws. With respect to the decentralized quadratic-type and tracking-type performance indices, by using Nash Certainty Equivalence he developed decentralized optimal controls, and proved the optimality of the closed-loop systems. He also initiated the study on consensusability and formability of MAS and obtained necessary and sufficient conditions which reflect the intrinsic relationships between the consensusability/formability and the agents’ dynamics, admissible control sets and communication topologies. These works are of great significance, since they break through the framework of conventional control theory and extend the methodology and tools in the stochastic adaptive control theory to analyzing MAS.

Index-coupled example

The multi-agent system Zhang mentioned could be used to describe an engineering or economic system. The uncertainty in his work is a kind of random noise appearing in the agent’s dynamic model. Brownian agent swarm systems are such examples, where the acceleration of agent depends on not only its own state variables (e.g. position, velocity, and energy), control, Gaussian white noise, but also the population position average. The dynamic equations are coupled together via the population position average. Other interest or performance index-coupled examples can be found in wireless communication networks and stock markets. In a wireless communication network with users, the changing rate of the received power for user depends on, its neighbors’ powers, control, random noise. Each user makes its own power control strategy to ensure the signal-to- interference-ratio to approach a desired level. This can be formulated by the following model (for simplicity, here we use a linear model with constant parameters) and a coupled-index group: where is the neighbor of user, are system parameters, is the constant background noise intensity, and. In a stock market with investigators, suppose that profits of each investigator is influenced by his recent profits situation and the profits situation of his neighbors, and each investigator wants to get something around the average value. Then, the problem can be described by the following model (for simplicity, here we use a linear model with constant parameters) and a coupled-interest index group: When a=1 and b=0, the coupled-interest index becomes. [6] [7] [8] [9]

Publications and awards

Zhang was elected as a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and as a Fellow of the International Federation of Automatic Control (IFAC). He was the second-place winner of the State Natural Science Award (China) in both 2010 and 2015. Zhang has also received the Distinguished Young Scholar Fund from National Natural Science Foundation of China in 1997; the First Prize of the Young Scientist Award of CAS in 1995; Excellent Chinese Doctoral Dissertation Supervisor in 2009; Excellent Graduate Student Supervisor of Chinese Academy of Sciences (CAS) in 2007, 2008 and 2009; the Best Paper award of the 7th Asian Control Conference in 2009; and the Guan Zhaozhi Best Paper award of the 23rd Chinese Control Conference in 2004.

Zhang’s current research interests are system identification, adaptive control, stochastic systems, and multi-agent systems. He has published 2 books, over 110 journal papers and 70 conference papers, in journals such as IEEE Transactions on Automatic Control, Automatica, and SIAM Journal on Control and Optimization. He has 5 papers listed in "Highly Cited Papers" by the ISI Web of Knowledge, Essential Science Indicators from Aug 2007 to Aug 2015.

Recent publications

Source: [10]

Books

  • L.Y. Wang, G. Yin, J.F. Zhang and Y. L. Zhao, System Identification with Quantized Observations, Birkhauser, Boston, 2010.
  • Qiang Zhang and Ji-Feng Zhang, Distributed Estimation and Control of Multi-Agent Systems, Science Press, Beijing, 2015. (In Chinese)

Related Research Articles

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

<span class="mw-page-title-main">System identification</span> Statistical methods to build mathematical models of dynamical systems from measured data

The field of system identification uses statistical methods to build mathematical models of dynamical systems from measured data. System identification also includes the optimal design of experiments for efficiently generating informative data for fitting such models as well as model reduction. A common approach is to start from measurements of the behavior of the system and the external influences and try to determine a mathematical relation between them without going into many details of what is actually happening inside the system; this approach is called black box system identification.

<span class="mw-page-title-main">Multi-armed bandit</span> Resource problem in machine learning

In probability theory and machine learning, the multi-armed bandit problem is a problem in which a decision maker iteratively selects one of multiple fixed choices when the properties of each choice are only partially known at the time of allocation, and may become better understood as time passes. A fundamental aspect of bandit problems is that choosing an arm does not affect the properties of the arm or other arms.

Václav Edvard "Vic" Beneš is a Czech-American, a mathematician known for his contributions to the theory of stochastic processes, queueing theory and control theory, as well as the design of telecommunications switches.

Karl Johan Åström is a Swedish control theorist, who has made contributions to the fields of control theory and control engineering, computer control and adaptive control. In 1965, he described a general framework of Markov decision processes with incomplete information, what ultimately led to the notion of a Partially observable Markov decision process.

<span class="mw-page-title-main">Yu-Chi Ho</span> American control theorist

Yu-Chi "Larry" Ho is a Chinese-American mathematician, control theorist, and a professor at the School of Engineering and Applied Sciences, Harvard University.

Mustafa Tamer Başar is a control and game theorist who is the Swanlund Endowed Chair and Center for Advanced Study Professor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign, USA. He is also the Director of the Center for Advanced Study.

Miroslav Krstić is an American control theorist and Distinguished Professor of Mechanical and Aerospace Engineering at the University of California, San Diego (UCSD). Krstić is also the director of the Center for Control Systems and Dynamics at UCSD and a Senior Associate Vice Chancellor for Research. In the list of eminent researchers in systems and control, he is the youngest.

Jan Hendrik van Schuppen is a Dutch mathematician and Professor at the Department of Mathematics of the Vrije Universiteit, known for his contributions in the field of systems theory, particularly on control theory and system identification, on probability, and on a number of related practical applications.

<span class="mw-page-title-main">Moshe Zakai</span> Israeli scientist (born 1926–2015)

Moshe Zakai was a Distinguished Professor at the Technion, Israel in electrical engineering, member of the Israel Academy of Sciences and Humanities and Rothschild Prize winner.

Design Automation usually refers to electronic design automation, or Design Automation which is a Product Configurator. Extending Computer-Aided Design (CAD), automated design and Computer-Automated Design (CAutoD) are more concerned with a broader range of applications, such as automotive engineering, civil engineering, composite material design, control engineering, dynamic system identification and optimization, financial systems, industrial equipment, mechatronic systems, steel construction, structural optimisation, and the invention of novel systems.

<span class="mw-page-title-main">Dragoslav D. Šiljak</span>

Dragoslav D. Šiljak is professor emeritus of Electrical Engineering at Santa Clara University, where he held the title of Benjamin and Mae Swig University Professor. He is best known for developing the mathematical theory and methods for control of complex dynamic systems characterized by large-scale, information structure constraints and uncertainty.

<span class="mw-page-title-main">Anders Lindquist</span>

Anders Gunnar Lindquist is a Swedish applied mathematician and control theorist. He has made contributions to the theory of partial realization, stochastic modeling, estimation and control, and moment problems in systems and control. In particular, he is known for the discovery of the fast filtering algorithms for (discrete-time) Kalman filtering in the early 1970s, and his seminal work on the separation principle of stochastic optimal control and, in collaborations with Giorgio Picci, the Geometric Theory for Stochastic Realization. Together with late Christopher I. Byrnes and Tryphon T. Georgiou, he is one of the founder of the so-called Byrnes-Georgiou-Lindquist school. They pioneered a new moment-based approach for the solution of control and estimation problems with complexity constraints.

<span class="mw-page-title-main">Arthur J. Krener</span>

Arthur James Krener is an American mathematician. He is a distinguished visiting professor in the department of applied mathematics at the Naval Postgraduate School. He has made contributions in the areas of control theory, nonlinear control, and stochastic processes.

Joseph Pierre LaSalle was an American mathematician specialising in dynamical systems and responsible for important contributions to stability theory, such as LaSalle's invariance principle which bears his name.

<span class="mw-page-title-main">Bruce Hajek</span> American electrical engineer

Bruce Edward Hajek is a Professor in the Coordinated Science Laboratory, the head of the Department of Electrical and Computer Engineering, and the Leonard C. and Mary Lou Hoeft Chair in Engineering at the University of Illinois Urbana–Champaign. He does research in communication networking, auction theory, stochastic analysis, combinatorial optimization, machine learning, information theory, and bioinformatics.

Vivek Shripad Borkar is an Indian electrical engineer, mathematician and an Institute chair professor at the Indian Institute of Technology, Mumbai. He is known for introducing analytical paradigm in stochastic optimal control processes and is an elected fellow of all the three major Indian science academies viz. the Indian Academy of Sciences, Indian National Science Academy and the National Academy of Sciences, India. He also holds elected fellowships of The World Academy of Sciences, Institute of Electrical and Electronics Engineers, Indian National Academy of Engineering and the American Mathematical Society. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Engineering Sciences in 1992. He received the TWAS Prize of the World Academy of Sciences in 2009.

Daniel M. Liberzon is the Richard T. Cheng Professor of Electrical and Computer Engineering at the University of Illinois at Urbana–Champaign.

<span class="mw-page-title-main">Roberto Tempo</span> Italian scientist

Roberto Tempo was an Italian scientist, known for his studies on complex networked systems in information technology.

Frank L. Lewis is an American electrical engineer, academic and researcher. He is a professor of electrical engineering, Moncrief-O’Donnell Endowed Chair, and head of Advanced Controls and Sensors Group at The University of Texas at Arlington (UTA). He is a member of UTA Academy of Distinguished Teachers and a charter member of UTA Academy of Distinguished Scholars.

References

  1. "Committees".
  2. "Committees".
  3. "17TH IFAC SYMPOSIUM ON SYSTEM IDENTIFICATION (SYSID 2015)".
  4. "International Program Committee".
  5. "Editorial Board".
  6. "Decentralized tracking-type games for multi-agent systems with coupled ARX models:Asymptotic Nash equilibria" (PDF).
  7. "Asymptotically Optimal Decentralized Control for Large Population Stochastic Multiagent Systems" (PDF).
  8. "Adaptive Tracking Games for Coupled Stochastic Linear Multi-Agent Systems: Stability, Optimality and Robustness" (PDF).
  9. "Adaptive Mean Field Games for Large Population Coupled ARX Systems with Unknown Coupling Strength" (PDF).
  10. "Publication List".