John Edwin Luecke | |
---|---|
Nationality | American |
Alma mater | University of Texas at Austin |
Known for | Gordon–Luecke theorem |
Scientific career | |
Fields | topology, knot theory |
Doctoral advisor | Cameron McAllan Gordon |
John Edwin Luecke is an American mathematician who works in topology and knot theory. He got his Ph.D. in 1985 from the University of Texas at Austin and is now a professor in the department of mathematics at that institution.
Luecke specializes in knot theory and 3-manifolds. In a 1987 paper [1] Luecke, Marc Culler, Cameron Gordon, and Peter Shalen proved the cyclic surgery theorem. In a 1989 paper [2] Luecke and Cameron Gordon proved that knots are determined by their complements, a result now known as the Gordon–Luecke theorem.
Dr Luecke received a NSF Presidential Young Investigator Award [3] [4] in 1992 and Sloan Foundation fellow [5] in 1994. In 2012 he became a fellow of the American Mathematical Society. [6]
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and K' are equivalent then φ(K) = φ(K')."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification, both in "enumeration" and "duplication removal".
A knot invariant is a quantity defined on the set of all knots, which takes the same value for any two equivalent knots. For example, a knot group is a knot invariant.
Typically a knot invariant is a combinatorial quantity defined on knot diagrams. Thus if two knot diagrams differ with respect to some knot invariant, they must represent different knots. However, as is generally the case with topological invariants, if two knot diagrams share the same values with respect to a [single] knot invariant, then we still cannot conclude that the knots are the same.
In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.
In mathematics, the knot complement of a tame knot K is the space where the knot is not. If a knot is embedded in the 3-sphere, then the complement is the 3-sphere minus the space near the knot. To make this precise, suppose that K is a knot in a three-manifold M. Let N be a tubular neighborhood of K; so N is a solid torus. The knot complement is then the complement of N,
Peter B. Shalen is an American mathematician, working primarily in low-dimensional topology. He is the "S" in JSJ decomposition.
In mathematics, the Smith conjecture states that if f is a diffeomorphism of the 3-sphere of finite order, then the fixed point set of f cannot be a nontrivial knot.
Cameron Gordon is a Professor and Sid W. Richardson Foundation Regents Chair in the Department of Mathematics at the University of Texas at Austin, known for his work in knot theory. Among his notable results is his work with Marc Culler, John Luecke, and Peter Shalen on the cyclic surgery theorem. This was an important ingredient in his work with Luecke showing that knots were determined by their complement. Gordon was also involved in the resolution of the Smith conjecture.
John Willard Morgan is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University.
In mathematics, the Gordon–Luecke theorem on knot complements states that if the complements of two tame knots are homeomorphic, then the knots are equivalent. In particular, any homeomorphism between knot complements must take a meridian to a meridian.
William Bernard Raymond Lickorish is a mathematician. He is emeritus professor of geometric topology in the Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, and also an emeritus fellow of Pembroke College, Cambridge. His research interests include topology and knot theory. He was one of the discoverers of the HOMFLY polynomial invariant of links, and proved the Lickorish-Wallace theorem which states that all closed orientable 3-manifolds can be obtained by Dehn surgery on a link.
In the mathematical theory of knots, a Berge knot or doubly primitive knot is any member of a particular family of knots in the 3-sphere. A Berge knot K is defined by the conditions:
In descriptive set theory, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game. A Gale–Stewart game is a possibly infinite two-player game, where both players have perfect information and no randomness is involved.
Knots have been used for basic purposes such as recording information, fastening and tying objects together, for thousands of years. The early significant stimulus in knot theory would arrive later with Sir William Thomson and his vortex theory of the atom.
Mladen Bestvina is a Croatian-American mathematician working in the area of geometric group theory. He is a Distinguished Professor in the Department of Mathematics at the University of Utah.
Marc Edward Culler is an American mathematician who works in geometric group theory and low-dimensional topology. A native Californian, Culler did his undergraduate work at the University of California at Santa Barbara and his graduate work at Berkeley where he graduated in 1978. He is now at the University of Illinois at Chicago. Culler is the son of Glen Jacob Culler who was an important early innovator in the development of the Internet.
In three-dimensional topology, a branch of mathematics, the cyclic surgery theorem states that, for a compact, connected, orientable, irreducible three-manifold M whose boundary is a torus T, if M is not a Seifert-fibered space and r,s are slopes on T such that their Dehn fillings have cyclic fundamental group, then the distance between r and s is at most 1. Consequently, there are at most three Dehn fillings of M with cyclic fundamental group. The theorem appeared in a 1987 paper written by Marc Culler, Cameron Gordon, John Luecke and Peter Shalen.
In mathematical knot theory, a Conway sphere, named after John Horton Conway, is a 2-sphere intersecting a given knot or link in a 3-manifold transversely in four points. In a knot diagram, a Conway sphere can be represented by a simple closed curve crossing four points of the knot, the cross-section of the sphere; such a curve does not always exist for an arbitrary knot diagram of a knot with a Conway sphere, but it is always possible to choose a diagram for the knot in which the sphere can be depicted in this way. A Conway sphere is essential if it is incompressible in the knot complement. Sometimes, this condition is included in the definition of Conway spheres.
Jonathan Micah Rosenberg is an American mathematician, working in algebraic topology, operator algebras, K-theory and representation theory, with applications to string theory in physics.
Lisa Marie Piccirillo is an American mathematician who works in the fields of geometry and low-dimensional topology. In 2020, Piccirillo published a mathematical proof in the journal Annals of Mathematics determining that the Conway knot is not a slice knot, answering an unsolved problem in knot theory first proposed over fifty years prior by English mathematician John Horton Conway.
Alan William Reid is a Scottish-American mathematician working primarily with arithmetic hyperbolic 3-manifolds. He is the Edgar Odell Lovett Chair of mathematics at Rice University, 2017—present.