John F. Brady (chemical engineer)

Last updated
John Francis Brady
JFB casual.jpg
Born (1954-01-08) 8 January 1954 (age 69)
NationalityAmerican
Alma mater University of Pennsylvania
University of Cambridge
Stanford University
Awards National Academy of Sciences (2020)

Society of Rheology (2015)
American Academy of Arts and Sciences (2014)
Fluid Dynamics Prize (APS) (2011)
Bingham Medal (Society of Rheology (2007))
National Academy of Engineering (1999)

Contents

American Physical Society (1994)
Scientific career
Fields Fluid dynamics
Rheology
Institutions Massachusetts Institute of Technology
California Institute of Technology
Doctoral advisor Andreas Acrivos

John Francis Brady (born January 8, 1954) is an American chemical engineer and the Chevron Professor of Chemical Engineering and Mechanical Engineering at the California Institute of Technology. He is a fluid mechanician and creator of the Stokesian dynamics method for simulating suspensions of spheres and ellipsoids in low Reynolds number flows. He is an elected fellow of the American Physical Society, a fellow of the Society of Rheology, as well as a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences.

Education and career

Brady was educated in chemical engineering at the University of Pennsylvania (B.S. 1975), the University of Cambridge, England (Certificate of Postgraduate Study, 1976), and Stanford University (M.S. 1977 and Ph.D. 1981). He completed his dissertation entitled Inertial effects in closed cavity flows and their influence in drop breakup advised by Professor Andreas Acrivos. Following his Ph.D., Brady was a NATO post-doctoral fellow at the Ecole Superiéure de Physique et de Chimie Industrielles, Paris, France (1980–81). [1]

Following his research in France, Brady joined the faculty in chemical engineering at the Massachusetts Institute of Technology as an assistant professor in 1981. He moved in 1985 to the Division of Chemistry and Chemical Engineering at the California Institute of Technology, which has been his academic home since. [2]

In 1999, Brady was elected a member of the National Academy of Engineering for his work in elucidating the basic mechanics of and developing methods for the simulation of multiphase flows.

Research contributions

Brady is an expert in the theory and simulations of fluid mechanics, rheology, and transport phenomena. He has made significant research contributions in the understanding of active matter and suspensions. Among his many accomplishments is the creation of Stokesian dynamics [3] with Georges Bossis. The Stokesian dynamics method allows the accurate and rapid simulation of the dynamics and rheology of suspensions of spherical particles at low Reynolds number. [4] [5] The technique has been used by researchers world-wide to model suspensions and understand a variety of physical systems. Brady and collaborators discovered the micromechanical "swim pressure" that contributes to the unique self-assembly and phase separation in a broad class of active matter. [6]

Brady was an associate editor of the Journal of Fluid Mechanics (1990-2004) and the editor of the Journal of Rheology (2005-2012). According to Google Scholar, his publications have received over 19,000 citations and his h-index is 68. [7]

Awards and honors

He has received numerous awards and honors which include:

Selected publications

  1. John F. Brady at California Institute of Technology
  2. "John F. Brady | Division of Chemistry and Chemical Engineering". cce.caltech.edu. Retrieved 2020-10-06.
  3. Brady, John; Bossis, Georges (1988). "Stokesian Dynamics". Annu. Rev. Fluid Mech. 20: 111–157. Bibcode:1988AnRFM..20..111B. doi:10.1146/annurev.fl.20.010188.000551.
  4. Brady, John; Sierou, Asimina (2001). "Accelerated Stokesian Dynamics simulations" (PDF). Journal of Fluid Mechanics. 448 (1): 115–146. Bibcode:2001JFM...448..115S. doi:10.1017/S0022112001005912. S2CID   119505431.
  5. Banchio, Adolfo J.; John F. Brady (2003). "Accelerated Stokesian dynamics: Brownian motion" (PDF). Journal of Chemical Physics. 118 (22): 10323–10332. Bibcode:2003JChPh.11810323B. doi:10.1063/1.1571819.
  6. Takatori, S. C.; Yan, W.; Brady, J. F. (2014-07-11). "Swim Pressure: Stress Generation in Active Matter" (PDF). Physical Review Letters. 113 (2): 028103. Bibcode:2014PhRvL.113b8103T. doi:10.1103/PhysRevLett.113.028103. PMID   25062240.
  7. "John F. Brady - Google Scholar". scholar.google.com. Retrieved 2020-10-06.
  8. "John Brady". www.nasonline.org. Retrieved 2020-10-06.
  9. "SoR Fellows - The Society of Rheology". www.rheology.org. Retrieved 2020-10-07.
  10. Caltech Faculty Elected to the American Academy of Arts and Sciences
  11. National Academy of Engineering
  12. "APS Fellow Archive". www.aps.org. Retrieved 2020-10-06.

Related Research Articles

<span class="mw-page-title-main">Denis Evans</span> Australian scientist

Denis James Evans, is an Australian scientist who is an Emeritus Professor at the Australian National University and Honorary Professor at The University of Queensland. He is widely recognised for his contributions to nonequilibrium thermodynamics and nonequilibrium statistical mechanics and the simulation of nonequilibrium fluids.

<span class="mw-page-title-main">Howard A. Stone</span> American engineer (born 1960)

Howard Alvin Stone is the Donald R. Dixon '69 and Elizabeth W. Dixon Professor in Mechanical and Aerospace Engineering at Princeton University. His field of research is in fluid mechanics, chemical engineering and complex fluids. He became an Editor of the Annual Review of Fluid Mechanics in 2021.

Harry L. Swinney is an American physicist noted for his contributions to the field of nonlinear dynamics.

Stokesian dynamics is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations. In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase particulate systems as molecular dynamics does for statistical properties of matter. For rigid particles of radius suspended in an incompressible Newtonian fluid of viscosity and density , the motion of the fluid is governed by the Navier–Stokes equations, while the motion of the particles is described by the coupled equation of motion:

The Cahn–Hilliard equation is an equation of mathematical physics which describes the process of phase separation, by which the two components of a binary fluid spontaneously separate and form domains pure in each component. If is the concentration of the fluid, with indicating domains, then the equation is written as

Leslie Gary Leal is the Warren & Katharine Schlinger Professor of Chemical Engineering at the University of California, Santa Barbara. He is known for his research work in the dynamics of complex fluids.

<span class="mw-page-title-main">David Ceperley</span>

David Matthew Ceperley is a theoretical physicist in the physics department at the University of Illinois Urbana-Champaign or UIUC. He is a world expert in the area of Quantum Monte Carlo computations, a method of calculation that is generally recognised to provide accurate quantitative results for many-body problems described by quantum mechanics.

<span class="mw-page-title-main">David Robert Nelson</span> American physicist (born 1951)

David R. Nelson is an American physicist, and Arthur K. Solomon Professor of Biophysics, at Harvard University.

<span class="mw-page-title-main">Michael Cates</span> British physicist (born 1961)

Michael Elmhirst Cates is a British physicist. He is the 19th Lucasian Professor of Mathematics at the University of Cambridge and has held this position since 1 July 2015. He was previously Professor of Natural Philosophy at the University of Edinburgh, and has held a Royal Society Research Professorship since 2007.

<span class="mw-page-title-main">Sharon Glotzer</span> American physicist

Sharon C. Glotzer is an American scientist and "digital alchemist", the Anthony C. Lembke Department Chair of Chemical Engineering, the John Werner Cahn Distinguished University Professor of Engineering and the Stuart W. Churchill Collegiate Professor of Chemical Engineering at the University of Michigan, where she is also professor of materials science and engineering, professor of physics, professor of macromolecular science and engineering, and professor of applied physics. She is recognized for her contributions to the fields of soft matter and computational science, most notably on problems in assembly science and engineering, nanoscience, and the glass transition, for which the elucidation of the nature of dynamical heterogeneity in glassy liquids is of particular significance. She is a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences.

David J. Pine is an American physicist who has made contributions in the field of soft matter physics, including studies on colloids, polymers, surfactant systems, and granular materials. He is professor of physics in the NYU College of Arts and Science and chair of the Department of Chemical and Biomolecular Engineering at the NYU Tandon School of Engineering.

Raymond Ethan Goldstein FRS FInstP is Schlumberger Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge and a Fellow of Churchill College, Cambridge.

Howard Brenner was a professor emeritus of chemical engineering at Massachusetts Institute of Technology. His research profoundly influenced the field of fluid dynamics, and his research contribution to fundamental principles of fluid dynamics has been deeply honored. His first textbook, Low Reynolds Number Hydrodynamics, earned him a reputation lasting several decades. His profession though fundamental research is on microfluidics, complex liquids, interfacial transport process, emulsion rheology, and multiphase flows.

Viswanathan Kumaran is an Indian chemical engineer, rheologist and a professor at the Department of Chemical Engineering of the Indian Institute of Science. He is known for his studies on stability of flow past flexible surfaces and is an elected fellow of the Indian Academy of Sciences, Indian National Science Academy and the Indian National Academy of Engineering. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Engineering Sciences in 2000. A recipient of the TWAS Prize in 2014 and the Infosys Prize 2016 in the Engineering and Computer Science category, Kumaran was listed in the Asian Scientist 100, a list of top 100 scientists from Asia, by the Asian Scientist magazine.

Surajit Sen is a physicist who works on theoretical and computational problems in non-equilibrium statistical physics and in nonlinear dynamics of many body systems. He holds a Ph.D in physics from The University of Georgia (1990) where he studied with M. Howard Lee. He is also interested in applying physics to study problems of relevance in a societal context. He is a professor of physics at the State University of New York, Buffalo. Much of Sen's recent work can be found in his RUSA lecture at Bharatidasan University.

<span class="mw-page-title-main">Amalie Frischknecht</span> American theoretical polymer physicist

Amalie L. Frischknecht is an American theoretical polymer physicist at Sandia National Laboratories in Albuquerque, New Mexico. She was elected a fellow of the American Physical Society (APS) in 2012 for "her outstanding contributions to the theory of ionomers and nanocomposites including the development and application of density functional theory to polymers". Her research focuses on understanding the structure, phase behavior, and self-assembly of polymer systems, such as complex fluids polymer nanocomposites, lipid bilayer assemblies, and ionomers.

<span class="mw-page-title-main">Mark O. Robbins</span> American condensed matter physicist (1955–2020)

Mark Owen Robbins was an American condensed matter physicist who specialized in computational studies of friction, fracture and adhesion, with a particular focus on nanotribology, contact mechanics, and polymers. He was a professor in the department of physics and astronomy at Johns Hopkins University at the time of his death.

Ronald G. Larson is George G. Brown Professor of Chemical Engineering and Alfred H. White Distinguished University Professor at the University of Michigan, where he holds joint appointments in macromolecular science and engineering, biomedical engineering, and mechanical engineering. He is internationally recognized for his research contributions to the fields of polymer physics and complex fluid rheology, especially in the development of theory and computational simulations. Notably, Larson and collaborators discovered new types of viscoelastic instabilities for polymer molecules and developed predictive theories for their flow behavior. He has written numerous scientific papers and two books on these subjects, including a 1998 textbook, “The Structure and Rheology of Complex Fluids”.

<span class="mw-page-title-main">Arezoo Ardekani</span> Iranian-American physicist and academic

Arezoo M. Ardekani is an Iranian-American physicist who is a professor at Purdue University. Her research considers the flow of complex fluids. She was elected a Fellow of the American Society of Mechanical Engineers in 2020 and a Fellow of the American Physical Society in 2022.

<span class="mw-page-title-main">Martin Z. Bazant</span> American chemical engineer, mathematician, physicist and academic

Martin Zdenek Bazant is an American chemical engineer, mathematician, physicist, and academic. He is the E. G. Roos (1944) Professor of Chemical Engineering and Mathematics at the Massachusetts Institute of Technology (MIT). From 2016 to 2020, he served as executive officer of the department of chemical engineering.