John David Reppy | |
---|---|
Born | |
Nationality | American |
Alma mater | University of Connecticut, Yale University |
Scientific career | |
Fields | Quantum properties of superfluids |
Institutions | Yale University, Cornell University |
Doctoral advisor | C. T. Lane |
Website | physics |
John David Reppy (born February 16, 1931) is a physicist and the John L. Wetherill Professor of Physics Emeritus at Cornell University. He studies the quantum properties of superfluids such as helium.
Reppy is also a notable rock climber of long standing. He established a number of widely known climbing routes particularly in the northeastern United States.
John David Reppy was born February 16, 1931, in Lakehurst, New Jersey. His father was stationed at the US Naval Air Station, where he worked with helium as a lifting gas for naval lighter-than-air aviation. The family moved almost every year to follow his military placements, including an assignment to Pearl Harbor prior to World War II. In 1943 he was sent to the western Pacific and the rest of the family settled in Haddam Neck, Connecticut.
In Connecticut John Reppy became interested in herpetology, geology and rock climbing, exploring local quarries. He graduated from high school in 1950. [1]
Reppy immediately enrolled at the University of Connecticut, beginning with summer school. He majored in mathematics but also began working for his thermodynamics instructor Charles Reynolds. At this time Reppy became friends with David M. Lee, who was also a student. Reppy received a bachelor's degree in math and physics in 1954 at University of Connecticut and a master's degree from the same school two years later. [2]
In 1956, Reppy joined Cecil T. Lane's Yale Low Temperature group at Yale University. As part of his Ph.D. work, Reppy adapted a design by Jesse Beams and built an apparatus for rotating a container of liquid helium in vacuum and measuring the helium's angular momentum. He completed his dissertation in 1960, [1] and received his Ph.D from Yale University in 1961. [3] Reppy spent 1961 working with Nicholas Kurti in Oxford on a National Science Foundation (NSF) Fellowship. [1]
In the 1950s and 60s, Reppy was active on Ragged Mountain in Connecticut where he collaborated on many first ascents and on publishing an area guidebook with Sam Streibert. The well-known Reppy's Crack on Cannon Mountain in New Hampshire bears his name and he has made first ascents as of number of routes in the Shawangunks and elsewhere. He made early attempts on Armadillo, a long alpine rock climb on Mount Katahdin, Maine. In addition, he has climbed extensively in England, the Alps and western America.
Reppy has said his earliest interest in rock climbing as a very young teenager was related to the re-opening of small open-pit mica mines in eastern Connecticut during World War II in response to increased war-time demand for electronics materials. [4] [5]
Reppy was among the first climbers in the United States to practice so-called "clean climbing" techniques, which he learned in England. While most climbers of the day were hammering their way up the cliffs with pitons, Reppy helped introduce the use of nuts, which at the time consisted of hex nuts from truck wheels, strung with nylon webbing. Unlike pitons, nuts are placed and removed without the use of hammers and save the rock from permanent damage. The technique often makes placements easier and faster to achieve, and thus may make difficult climbs easier to complete. Many advances in rock climbing were made possible by this method. Among a substantial number of others deserving credit for this trend in the U.S. are Yvon Chouinard and John Stannard. [6]
Reppy returned to New Haven, Connecticut, in 1962, and spent four years as an assistant professor at Yale University. He joined the Cornell University Physics Department in 1966, becoming the John Wetherill Professor of Physics in 1987. [3] As physics professor at Cornell University, he studies quantum properties of superfluids with an emphasis on boundary conditions and phase transitions in systems of reduced dimensionality.
Reppy's research group has close associations with David M. Lee and Robert C. Richardson also of Cornell, who shared the 1996 Nobel Prize in Physics with Douglas D. Osheroff for discoveries related to super fluidity in helium-3 ice. Lee, in his Nobel Prize speech, credited Reppy's "extraordinary technical ingenuity" in experiments leading to the discovery. In the speech, Lee made other references to Reppy, noting that his work helped confirm related insights. [7]
Reppy also figured at least on the fringes of the 2001 Nobel Prize for Physics which was awarded to Eric Cornell and Carl Wieman of the Joint Institute for Laboratory Astrophysics, or JILA, in Boulder, Colo., and Wolfgang Ketterle of the Massachusetts Institute of Technology. Bose–Einstein condensation was predicted in 1924, and was seen decades ago in liquid helium, according to Ketterle, who acknowledged a controversial earlier claim by Reppy. Ketterle says that Reppy brought this finding to his attention, and that the priority claim was fair. "I think the results appeared conclusive", Ketterle reportedly said. Co-laureate Wieman reportedly said that Reppy's claim is "really a stretch" and that "Ketterle is being gracious". [8]
Physicists generally agree that the atoms in superfluid helium-4 is not a Bose–Einstein condensate in the original sense of the term because its atoms interact too strongly. Reppy studied an exception: tiny amounts of helium trapped in nanometer-sized pores of a spongelike glass called Vycor. Even though the pores keep its atoms too far apart to jostle one another much, the helium still behaves like a three-dimensional fluid. In 1983 Reppy and colleagues reported results that suggested the helium was sloshing through the glass as a true Bose–Einstein condensate.
Separately, work from Cornell physics laboratories has been used to test a theory of cosmic strings, hypothetical objects, which may have been important in the formation of galaxies, and may have arisen through "phase transitions" in a fraction of a second after the Big Bang. [9]
Reppy is the recipient of numerous awards and honors, including the Fritz London Memorial Prize in 1981 and the NASA Distinguished Public Service Medal for leadership and support to the NASA microgravity fundamental physics program in 2000. Reppy is also a member of the National Academy of Sciences (1988). [2] [10]
Absolute zero is the lowest limit of the thermodynamic temperature scale; a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15 degrees on the Celsius scale, which equals −459.67 degrees on the Fahrenheit scale. The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition.
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum mechanical phenomena, particularly wavefunction interference, become apparent macroscopically.
Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, which looks like a normal liquid, flows without friction past any surface, which allows it to continue to circulate over obstructions and through pores in containers which hold it, subject only to its own inertia.
Carl Edwin Wieman is an American physicist and educationist at Stanford University, and currently the A.D White Professor at Large at Cornell University. In 1995, while at the University of Colorado Boulder, he and Eric Allin Cornell produced the first true Bose–Einstein condensate (BEC) and, in 2001, they and Wolfgang Ketterle were awarded the Nobel Prize in Physics. Wieman currently holds a joint appointment as Professor of Physics and Professor in the Stanford Graduate School of Education, as well as the DRC Professor in the Stanford University School of Engineering. In 2020, Wieman was awarded the Yidan Prize in Education Research for "his contribution in developing new techniques and tools in STEM education." citation.
Eric Allin Cornell is an American physicist who, along with Carl E. Wieman, was able to synthesize the first Bose–Einstein condensate in 1995. For their efforts, Cornell, Wieman, and Wolfgang Ketterle shared the Nobel Prize in Physics in 2001.
In condensed matter physics, a supersolid is a spatially ordered material with superfluid properties. In the case of helium-4, it has been conjectured since the 1960s that it might be possible to create a supersolid. Starting from 2017, a definitive proof for the existence of this state was provided by several experiments using atomic Bose–Einstein condensates. The general conditions required for supersolidity to emerge in a certain substance are a topic of ongoing research.
A fermionic condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar conditions. The earliest recognized fermionic condensate described the state of electrons in a superconductor; the physics of other examples including recent work with fermionic atoms is analogous. The first atomic fermionic condensate was created by a team led by Deborah S. Jin using potassium-40 atoms at the University of Colorado Boulder in 2003.
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing.
Sir Anthony James Leggett is a British–American theoretical physicist and professor emeritus at the University of Illinois Urbana-Champaign. Leggett is widely recognised as a world leader in the theory of low-temperature physics, and his pioneering work on superfluidity was recognised by the 2003 Nobel Prize in Physics. He has shaped the theoretical understanding of normal and superfluid helium liquids and strongly coupled superfluids. He set directions for research in the quantum physics of macroscopic dissipative systems and use of condensed systems to test the foundations of quantum mechanics.
Wolfgang Ketterle is a German physicist and professor of physics at the Massachusetts Institute of Technology (MIT). His research has focused on experiments that trap and cool atoms to temperatures close to absolute zero, and he led one of the first groups to realize Bose–Einstein condensation in these systems in 1995. For this achievement, as well as early fundamental studies of condensates, he was awarded the Nobel Prize in Physics in 2001, together with Eric Allin Cornell and Carl Wieman.
Clean climbing is rock climbing techniques and equipment which climbers use in order to avoid damage to the rock. These techniques date at least in part from the 1920s and earlier in England, but the term itself may have emerged in about 1970 during the widespread and rapid adoption in the United States and Canada of nuts, and the very similar but often larger hexes, in preference to pitons, which damage rock and are more difficult and time-consuming to install. Pitons were thus eliminated in North America as a primary means of climbing protection in a period of less than three years.
JILA, formerly known as the Joint Institute for Laboratory Astrophysics, is a physical science research institute in the United States. JILA is located on the University of Colorado Boulder campus. JILA was founded in 1962 as a joint institute of The University of Colorado Boulder and the National Institute of Standards & Technology.
David Morris Lee is an American physicist who shared the 1996 Nobel Prize in Physics with Robert C. Richardson and Douglas Osheroff "for their discovery of superfluidity in helium-3." Lee is professor emeritus of physics at Cornell University and distinguished professor of physics at Texas A&M University.
Robert Coleman Richardson was an American experimental physicist whose area of research included sub-millikelvin temperature studies of helium-3. Richardson, along with David Lee, as senior researchers, and then graduate student Douglas Osheroff, shared the 1996 Nobel Prize in Physics for their 1972 discovery of the property of superfluidity in helium-3 atoms in the Cornell University Laboratory of Atomic and Solid State Physics.
In condensed matter physics, an ultracold atom is an atom with a temperature near absolute zero. At such temperatures, an atom's quantum-mechanical properties become important.
Superfluidity is a phenomenon where a fluid, or a fraction of a fluid, loses all its viscosity and can flow without resistance, which can form thin films.
An acousto-optic deflector (AOD) is a device that uses the interaction between sound waves and light waves to deflect or redirect a laser beam. AODs are essentially the same as acousto-optic modulators (AOMs). In both an AOM and an AOD, the amplitude and frequency of different orders are adjusted as light is diffracted.
The MIT School of Science is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts, United States. The School is composed of 6 academic departments who grant SB, SM, and PhD or ScD degrees; as well as a number of affiliated laboratories and centers. As of 2020, the Dean of Science is Professor Nergis Mavalvala. With approximately 275 faculty members, 1100 graduate students, 700 undergraduate majors, 500 postdocs, and 400 research staff, the School is the second largest at MIT. As of 2019, 12 faculty members and 14 alumni of the School have won Nobel Prizes.
Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity. The theory of superfluidity was developed by Soviet theoretical physicists Lev Landau and Isaak Khalatnikov.
Lev Petrovich Pitaevskii was a Russian theoretical physicist, who made contributions to the theory of quantum mechanics, electrodynamics, low-temperature physics, plasma physics, and condensed matter physics. Together with his PhD supervisor Evgeny Lifshitz and with Vladimir Berestetskii, he was also the co-author of a few volumes of the influential Landau–Lifschitz Course of Theoretical Physics series. His academic status was professor.
{{cite journal}}
: Cite journal requires |journal=
(help)