Juan Pascual-Leone | |
---|---|
Born | 1933 Valencia, Spain |
Nationality | Spanish, Canadian |
Known for | neo-Piagetian approach to cognitive development; Theory of Constructive Operators (TCO) |
Scientific career | |
Fields | Cognitive Developmental Psychology and Developmental Neuropsychology |
Institutions | York University |
Thesis | Cognitive development and cognitive style: A general psychological integration. (1969) |
Doctoral advisor | Jean Piaget |
Other academic advisors | Herman Witkin |
Website | https://psyc.info.yorku.ca/health-profiles/index.php?dept=&mid=2764 |
Juan Pascual-Leone (born 1933 in Spain) is a developmental psychologist and founder of the neo-Piagetian approach to cognitive development. He introduced this term into the literature [1] and put forward [2] key predictions about developmental growth of mental attention and working memory. [3] [4]
Pascual-Leone pioneered descriptions of developmental cognitive growth from an organismic perspective, i.e. "from within" the subjects' task processing. [5] [4] He contrasts this "metasubjective" perspective with the external observer's perspective taken in much psychological research and theory. His modeling of processing involves mental or metasubjective task-analysis, which yields estimates of task complexity from the subject's perspective. [6] [7] [8] Using this method he clarified distinctions between learning (including the learning of executive functions), maturational-developmental processes, and working memory, studying their interrelationships from within the subject's processing.
The Theory of Constructive Operators (TCO), is his general causal model of cognitive development, framed in terms of organismic operators, schemes, and principles.
Pascual-Leone studied medicine at the University of Valencia and specialized in psychiatry and neurology in Santander, on the north coast of Spain, and in Paris. His background as a medical doctor and neuropsychiatrist, and his experience studying psychology with Jean Piaget, contributed to a sophisticated understanding of Piaget's theory. The TCO is an expansion and reformulation that integrates the ideas of, among others, his mentors Jean Piaget and Herman Witkin.
In 1963–69, Pascual-Leone studied psychology at the University of Geneva, Switzerland, where, in 1964, he obtained his M.A. (Licence) in Experimental Child Development, and in 1969, his Ph.D. in psychology. Here, he was under the direct supervision of Jean Piaget (1896-1980), at the peak of his fame as child psychologist and constructivist-development researcher, whom he refers to as "my intellectual father in Psychology". [9] As one of the later graduate students of Piaget, he obtained first-hand knowledge of Piaget's theory, collaborating in Piaget's book on mental image. He was one of the first of Piaget's students to explicitly highlight shortcomings of the master's theory.
Pascual-Leone also studied under the American psychologist Herman Witkin (1916-1979). Witkin—a student of Max Wertheimer, a founder of Gestalt Psychology—conducted research on individual differences (cognitive styles) in cognitive and perceptional psychology as well as personality development; his focus was on psycho-social processes and cognitive differentiation. [10] Witkin was an innovator who pioneered, from an organismic perspective, theories of cognitive styles, psychological differentiation, and learning styles. [11]
Pascual-Leone defended his doctoral thesis in psychology [12] in Geneva, with Piaget and Witkin as supervisors. In 1964–65, Pascual-Leone did research at Witkin's laboratory at the State University of New York, Downstate Medical Center. This final doctoral research was done under Witkin's sponsorship and supervision with the help of a postdoctoral fellowship from the Foundations Fund for Research in Psychiatry. Working with Witkin influenced Pascual-Leone's later TCO theory, which was more process-analytical and developmental but in line with Witkin's theory. [9]
Pascual-Leone's now-classic cognitive developmental research in the 1960s led to his seminal paper in 1970, [2] one of the 500 most cited papers in the field of psychology. In this work he proposed a mathematical model of endogenous mental-attention and explained how it develops as a function of chronological age in normal children. His findings demonstrated for the first time that, when measured behaviorally, children's mental-attentional capacity increases after the age of three, by one symbol-processing unit every other year until it reaches seven units at 15–16 years. Seven units, according to Miller [13] and Pascual-Leone, [2] [14] is the maximum-capacity of mental/executive attention in adults (although adults may habitually apply about 5 units of this capacity). Pascual-Leone's mental-attention model was the first to quantify the effective complexity of processing stages in human development. Many of his ideas challenged the scientific establishment at the time. Commenting on this work, Barrouillet and Gaillard wrote: "Neo-Piagetian theories have the potential to account for most of the learning difficulties and developmental disorders by cumulating the strength of the functionalist and the structuralist approaches." [15]
Pascual-Leone analyzed developmental data investigating the tasks' processing complexity. He assessed complexity by modeling the number of essential operators, relations, or schemes that children must simultaneously hold in mind to produce performance. In 1963, he inferred with his analyses that there is a maximum mental demand that each child's age group can cope with – the characteristic mental (M-) power of each developmental stage-level. [2] Only when the growth of mental power in a child is equal to or larger than the task's mental demand, can the child reliably solve a task. Today this information is well recognized; but in the nineteen seventies and eighties the idea was controversial. Pascual-Leone was the first to claim, via his task analyses, that the true organismic stages were in fact the sub-stages of Piaget. [9] Recently Arsalidou, Pascual-Leone, Johnson, Morris, and Taylor have produced data suggesting that these levels of functioning may be expressed in adults by incrementation of brain activity in the executive (prefrontal lobes, etc.) network. [16]
In later years, Pascual-Leone's scientific work received increased recognition. [17] [18] [19] [20] [21] [22] His theory has been validated in his laboratory [23] [8] [24] [25] [26] [27] [28] and by independent researchers, who, often without explicit reference to Pascual-Leone, have supported his original predictions and subsequent results, either using his tasks or with methods that converge with his. [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40]
The impact of Pascual-Leone's work can be seen in three scholarly controversies: (1) the debate over Trabasso's critique of Pascual-Leone's 1970 paper; [2] [41] [42] [43] [44] (2) the multi-author discussion of Kemps, De Rammelaere, and Desmet [45] comparing Pascual-Leone's model of mental attention with Baddeley's model of working memory; [46] [47] [48] and (3) the discussion of Demetriou, Spanoudis, and Shayer's study on speed of processing, working memory, and general intelligence. [49] [5] A further indicator of the interest in Pascual-Leone's work is evidenced by various published interviews. [9] [50] [51] [52] [53]
With Janice M. Johnson, Pascual-Leone has written a book presenting his theory and data supporting it, as well as his method of mental task analysis. [54] He has published numerous articles and chapters (some of which can be found in ResearchGate). In 2006, he received an honorary doctorate from the University of Cyprus and in 2018 was made a Fellow of the Association for Psychological Science.
Pascual-Leone was among the earlier developmental researchers to emphasize the role of cognitive styles (e.g., field-dependence-independence, adaptive flexibility) and individual differences in cognitive development; [55] [56] and he was the first to quantify mental-attention capacity throughout development. His research on children's and adults' mental-attentional capacity and on cognitive styles (which affect the person's propensity to experience and cope with misleading/conflicting situations versus facilitating situations), as well as his metasubjective ("from within") analysis, has opened up new perspectives for understanding cognitive processes; and has helped to clarify causal-developmental relations between affect/motivation, cognition, individual differences, and complex/conceptual processes.
Pascual-Leone's work can be classified under four diverse categories: (1) Dialectical constructivist epistemology, the theory of constructive operators, a model for quantifying mental/executive attention, and process task analysis; (2) Educational domains: math, visuospatial, logic, language, science education, giftedness; (3) Individual differences, cognitive styles, developmental neuropsychology, and brain semantics; and (4) Mental health: psychotherapy, [57] [58] meditation, and human change.
Regarding his innovative work on individual differences as sources of difficulty/conflict in Piagetian tasks, Case and Edelstein have written:
"The nature of this conflict, Pascual-Leone asserted, is the same as the conflict elicited by Witkin's classic embedded figures test […] As a consequence, the pathways by which a subject must arrive at the solution to the two sorts of different tasks (field misleading and field facilitating) is different. For this reason Pascual-Leone predicted that field-dependent subjects would show a different developmental profile from field-independent subjects in any battery in which both types of developmental task are administered […] Pascual-Leone was able to predict the pattern of individual differences across a remarkably broad variety of Piagetian and psychometric tasks [12] […] In the general theoretical system that he evolved, what was seen as universal about development was its inexorable move towards greater complexity, as a result of biennial increases in mental power (M power). What was seen as individual about development were the particular situations to which different children were sensitive, and the particular styles or strategies that they evolved for dealing with these situations. Field independence was just one of the styles Pascual-Leone studied." [59]
Pascual-Leone proposed the Theory of Constructive Operators (TCO) – an organismic cognitive-developmental theory that is neuropsychologically interpretable in terms of brain processes. [60] [16] [61] [54] He was the first to quantify cognitive-processing limitations in novel problem-solving situations and at different stages of development, and was the first to use a formal, explicit method of process-task analysis to estimate the mental-attention demands of tasks. [7]
This theory explains human psychological functioning as the product of the dynamic combination of schemes (the brain's "software" – information/action bearing processes, embodied by cell assemblies or networks) and "hidden hardware" operators of the brain. Hidden operators acting on schemes generate thoughts, actions, and learning. They are brain-resource mechanisms that regulate functioning of (and can change) schemes. Piaget left these resources unexplained and often referred to them as principles like "regulations", "accommodation", and "equilibration". Operators intervene in all neuropsychological processes that are emergent and not automatized or overlearned. They include M-operator (mental-attention capacity, which explains the innate-developmental basis of working memory); I-operator (inhibition mechanism causing attentional interruption); L-operator (i.e., logical- structural learning capability); C-learning (content-learning capability); F-operator (i.e., the neo-Gestaltist "field effects", or "minimum principle", or "S-R compatibility"); etc. Table 1 shows different operators of the TCO and some of their key brain regions. [62] [54]
Pascual-Leone's model of mental attention includes activation and inhibition processes. The activation component (M-capacity) boosts information schemes necessary for task performance. M-operator capacity is measured in terms of the maximum number of mental schemes (not strongly activated by the input, learning, or by strong affects) that can be boosted into working memory (i.e., mental focus or attentional centration) at any one time. The method of M-measurement presents task items that vary systematically in demand for mental attention. In this way an individual's M-capacity can be measured, in terms of the amount of attentional demand they can handle. [7] [54] By refining the method and accumulating research evidence, Pascual-Leone reached interval scales of measurement of this mental-attentional load. Pascual-Leone also highlighted brain regions that sub-serve cognitive processes linked to his theoretical constructs, offering a tentative chronological map of their evolution. [54] [62] [63]
M-capacity is the key maturational causal factor of working memory. Working memory refers to all the schemes in a person's repertoire that are sufficiently activated (irrespective of the cause) to co-determine the ongoing process of representation or performance. There are other causes of scheme activation (including affects/emotions, overlearning/automatization, field factors); for this reason the size of working memory is often larger than the size of M-centration. [64] [14] [62]
Operator | Description | Main Brain Region |
---|---|---|
A | Set of affective processes that intervene in motivation and attentive arousal. | Brain stem, hypothalamus, extended amygdala, limbic system |
C | Both the process of content learning and the schemes derived from associative content learning. | Thalamus; Broadmann primary & secondary areas |
F(SOP) | The field operator, which acts as a binding mechanism in the brain and brings closure to mental representations in a neoGestaltist manner. It often functions intertwined with the principle of Schemes' Overdetermination of Performance (SOP) | All areas |
LC | The process of automatized logical-structural learning derived from C-learning through over-practice and automatization. | Right hemisphere (RH) |
T | Temporarily and effortlessly collates sequences of figurative schemes, thus facilitating the coordination that constitutes distal objects. | Hippocampal complex. Occipito-temporal cortex |
S | Effortlessly coordinates relations of coexistence among activated schemes, during operative activity (praxis). Thereby it facilitates emergence of spatial schemes or schemas. | Hippocampal complex. Occipito-parietal cortex |
LA, LB | Logical-structural learning primed by strong affects, or by preferences of the personal-social being – including his/her emotions. | Limbic system, orbito & medial prefrontal, inferotemporal, medial parietal cortex |
I | The attentional interrupt, which corresponds to the power of central active inhibition of unwanted schemes activated in the situation. | Prefrontal, RH-medial & dorsolateral cortex. Basal ganglia.Thalamus |
M | Mental attentional capacity of the individual. | Prefrontal, lateral & dorsolateral cortex. Basal ganglia. Thalamus. |
LM | Logical-structural learning caused by the effortful use of mental attentional capacity | Left hemisphere tertiary, polymodal areas |
E | Executive schemes in the person's repertoire, for the task at hand. | Prefrontal, lateral, dorsolateral, etc. frontopolar areas |
Pascual-Leone is now professor emeritus and senior scholar at York University, Toronto, where he continues to have an active laboratory. He has completed with Dr. Janice Johnson a longitudinal study on development of mental attentional capacity. With Dr. Marie Arsalidou he continues research on mental-attention measurement that is applicable across content domains (Color-Matching Task, Letter-Matching Task, Number Matching Task, etc.). These tasks are being compared with established mental-capacity tasks (such as Figural Intersections Task (FIT)) and are related to language (e.g., bilingualism) and other domains. They are also investigating brain correlates of the tasks in children and adults by using functional magnetic resonance imaging (fMRI). In a different direction, Pascual-Leone's laboratory is studying how to energize a person's functional mental attention (not his/her maturational capacity or reserve) by using meditation methods. His lab has previously shown that regular practice of Tai Chi increases the functional level of mental attention. [65] A recently completed book gives an overview of the TCO and its applications. [54]
Cognitive psychology is the scientific study of mental processes such as attention, language use, memory, perception, problem solving, creativity, and reasoning.
Developmental psychology is the scientific study of how and why humans grow, change, and adapt across the course of their lives. Originally concerned with infants and children, the field has expanded to include adolescence, adult development, aging, and the entire lifespan. Developmental psychologists aim to explain how thinking, feeling, and behaviors change throughout life. This field examines change across three major dimensions, which are physical development, cognitive development, and social emotional development. Within these three dimensions are a broad range of topics including motor skills, executive functions, moral understanding, language acquisition, social change, personality, emotional development, self-concept, and identity formation.
Educational psychology is the branch of psychology concerned with the scientific study of human learning. The study of learning processes, from both cognitive and behavioral perspectives, allows researchers to understand individual differences in intelligence, cognitive development, affect, motivation, self-regulation, and self-concept, as well as their role in learning. The field of educational psychology relies heavily on quantitative methods, including testing and measurement, to enhance educational activities related to instructional design, classroom management, and assessment, which serve to facilitate learning processes in various educational settings across the lifespan.
Working memory is a cognitive system with a limited capacity that can hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term memory, but some theorists consider the two forms of memory distinct, assuming that working memory allows for the manipulation of stored information, whereas short-term memory only refers to the short-term storage of information. Working memory is a theoretical concept central to cognitive psychology, neuropsychology, and neuroscience.
Jean William Fritz Piaget was a Swiss psychologist known for his work on child development. Piaget's theory of cognitive development and epistemological view are together called genetic epistemology.
Cognition is the "mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, imagination, intelligence, the formation of knowledge, memory and working memory, judgment and evaluation, reasoning and computation, problem-solving and decision-making, comprehension and production of language. Cognitive processes use existing knowledge to discover new knowledge.
Psychology is an academic and applied discipline involving the scientific study of human mental functions and behavior. Occasionally, in addition or opposition to employing the scientific method, it also relies on symbolic interpretation and critical analysis, although these traditions have tended to be less pronounced than in other social sciences, such as sociology. Psychologists study phenomena such as perception, cognition, emotion, personality, behavior, and interpersonal relationships. Some, especially depth psychologists, also study the unconscious mind.
In psychology, cognitivism is a theoretical framework for understanding the mind that gained credence in the 1950s. The movement was a response to behaviorism, which cognitivists said neglected to explain cognition. Cognitive psychology derived its name from the Latin cognoscere, referring to knowing and information, thus cognitive psychology is an information-processing psychology derived in part from earlier traditions of the investigation of thought and problem solving.
The concepts of fluid intelligence (gf) and crystallized intelligence (gc) were introduced in 1963 by the psychologist Raymond Cattell. According to Cattell's psychometrically-based theory, general intelligence (g) is subdivided into gf and gc. Fluid intelligence is the ability to solve novel reasoning problems and is correlated with a number of important skills such as comprehension, problem-solving, and learning. Crystallized intelligence, on the other hand, involves the ability to deduce secondary relational abstractions by applying previously learned primary relational abstractions.
Piaget's theory of cognitive development, or his genetic epistemology, is a comprehensive theory about the nature and development of human intelligence. It was originated by the Swiss developmental psychologist Jean Piaget (1896–1980). The theory deals with the nature of knowledge itself and how humans gradually come to acquire, construct, and use it. Piaget's theory is mainly known as a developmental stage theory.
In psychology, developmental stage theories are theories that divide psychological development into distinct stages which are characterized by qualitative differences in behavior.
Cognitive development is a field of study in neuroscience and psychology focusing on a child's development in terms of information processing, conceptual resources, perceptual skill, language learning, and other aspects of the developed adult brain and cognitive psychology. Qualitative differences between how a child processes their waking experience and how an adult processes their waking experience are acknowledged. Cognitive development is defined as the emergence of the ability to consciously cognize, understand, and articulate their understanding in adult terms. Cognitive development is how a person perceives, thinks, and gains understanding of their world through the relations of genetic and learning factors. There are four stages to cognitive information development. They are, reasoning, intelligence, language, and memory. These stages start when the baby is about 18 months old, they play with toys, listen to their parents speak, they watch TV, anything that catches their attention helps build their cognitive development.
Information processing theory is the approach to the study of cognitive development evolved out of the American experimental tradition in psychology. Developmental psychologists who adopt the information processing perspective account for mental development in terms of maturational changes in basic components of a child's mind. The theory is based on the idea that humans process the information they receive, rather than merely responding to stimuli. This perspective uses an analogy to consider how the mind works like a computer. In this way, the mind functions like a biological computer responsible for analyzing information from the environment. According to the standard information-processing model for mental development, the mind's machinery includes attention mechanisms for bringing information in, working memory for actively manipulating information, and long-term memory for passively holding information so that it can be used in the future. This theory addresses how as children grow, their brains likewise mature, leading to advances in their ability to process and respond to the information they received through their senses. The theory emphasizes a continuous pattern of development, in contrast with cognitive-developmental theorists such as Jean Piaget's theory of cognitive development that thought development occurs in stages at a time.
Domain-general learning theories of development suggest that humans are born with mechanisms in the brain that exist to support and guide learning on a broad level, regardless of the type of information being learned. Domain-general learning theories also recognize that although learning different types of new information may be processed in the same way and in the same areas of the brain, different domains also function interdependently. Because these generalized domains work together, skills developed from one learned activity may translate into benefits with skills not yet learned. Another facet of domain-general learning theories is that knowledge within domains is cumulative, and builds under these domains over time to contribute to our greater knowledge structure. Psychologists whose theories align with domain-general framework include developmental psychologist Jean Piaget, who theorized that people develop a global knowledge structure which contains cohesive, whole knowledge internalized from experience, and psychologist Charles Spearman, whose work led to a theory on the existence of a single factor accounting for all general cognitive ability.
Nelson Cowan is the Curators' Distinguished Professor of Psychological Sciences at the University of Missouri. He specializes in working memory, the small amount of information held in mind and used for language processing and various kinds of problem solving. To overcome conceptual difficulties that arise for models of information processing in which different functions occur in separate boxes, Cowan proposed a more organically organized "embedded processes" model. Within it, representations held in working memory comprise an activated subset of the representations held in long-term memory, with a smaller subset held in a more integrated form in the current focus of attention. Other work has been on the developmental growth of working memory capacity and the scientific method. His work, funded by the National Institutes of Health since 1984, has been cited over 41,000 times according to Google Scholar. The work has resulted in over 250 peer-reviewed articles, over 60 book chapters, 2 sole-authored books, and 4 edited volumes.
Some of the research that is conducted in the field of psychology is more "fundamental" than the research conducted in the applied psychological disciplines, and does not necessarily have a direct application. The subdisciplines within psychology that can be thought to reflect a basic-science orientation include biological psychology, cognitive psychology, neuropsychology, and so on. Research in these subdisciplines is characterized by methodological rigor. The concern of psychology as a basic science is in understanding the laws and processes that underlie behavior, cognition, and emotion. Psychology as a basic science provides a foundation for applied psychology. Applied psychology, by contrast, involves the application of psychological principles and theories yielded up by the basic psychological sciences; these applications are aimed at overcoming problems or promoting well-being in areas such as mental and physical health and education.
Neo-Piagetian theories of cognitive development criticize and build upon Jean Piaget's theory of cognitive development.
Andreas Demetriou is a Greek Cypriot developmental psychologist and former Minister of Education and Culture of Cyprus. He is a founding fellow and president of The Cyprus Academy of Sciences, Letters and Arts.
Childhood memory refers to memories formed during childhood. Among its other roles, memory functions to guide present behaviour and to predict future outcomes. Memory in childhood is qualitatively and quantitatively different from the memories formed and retrieved in late adolescence and the adult years. Childhood memory research is relatively recent in relation to the study of other types of cognitive processes underpinning behaviour. Understanding the mechanisms by which memories in childhood are encoded and later retrieved has important implications in many areas. Research into childhood memory includes topics such as childhood memory formation and retrieval mechanisms in relation to those in adults, controversies surrounding infantile amnesia and the fact that adults have relatively poor memories of early childhood, the ways in which school environment and family environment influence memory, and the ways in which memory can be improved in childhood to improve overall cognition, performance in school, and well-being, both in childhood and in adulthood.
Attentional control, colloquially referred to as concentration, refers to an individual's capacity to choose what they pay attention to and what they ignore. It is also known as endogenous attention or executive attention. In lay terms, attentional control can be described as an individual's ability to concentrate. Primarily mediated by the frontal areas of the brain including the anterior cingulate cortex, attentional control and attentional shifting are thought to be closely related to other executive functions such as working memory.