KBS-3

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia
The capsule (Swedish version). Loppusijoituskapseli.jpg
The capsule (Swedish version).

KBS-3 (an abbreviation of kärnbränslesäkerhet, nuclear fuel safety) is a technology for disposal of high-level radioactive waste developed in Sweden by Svensk Kärnbränslehantering AB (SKB) by appointment from Statens Strålskyddsinstitut (the government's radiation protection agency). The technology was developed by studying different natural storage facilities such as the natural reactor in Oklo, Gabon and the uranium mine in Cigar Lake, Saskatchewan, Canada. The general theory is that radioactive rock in these sites has been present for thousands of years, and has not affected the health and well-being of human populations. KBS-3 is also to be used in Finland at the Onkalo spent nuclear fuel repository, being built by Posiva.

Contents

The disposal method consists of the following steps: [1]

If the holes into the rock from the tunnel are drilled vertically, the method is called KBS-3V and if they are drilled horizontally it is called KBS-3H. The only method considered so far is KBS-3V.

The overall theory is that radioactive rock has always been present in the earth, and it is generally harmless to human populations. Further, Cigar Lake and Oklo have proven that actinides do not easily migrate via ground water or other means. Spent fuel consists of radioactive ceramic, cooled until its short-half-life radioactives have decayed, so its heat-production is negligible. When initially made, the ceramic fuel is also wrapped in sealed tubes of corrosion-resistant zirconium alloy. Therefore, spent fuel is not water-soluble in any conventional sense, and is mechanically sturdy. The other elements present (crystalline bedrock, corrosion-resistant copper cylinders, etc.) have been scientifically proven to reduce the exposure to ground water, and the rate at which it can penetrate to the fuel and dissolve it. Further, if correctly sited, any leakage will enter seawater, providing a safe dilution until decay. Geological stability against earthquakes and other extreme events can be further increased by careful site-selection. These safety factors multiply, extending the containment lifetime until most radioactive elements in the fuel have decayed, and only the longest-lived, least-radioactive isotopes remain. At this point, the contents of the repository are at least as safe as natural deposits of uranium. The process has been extensively studied and depends on well-understood chemistry and geology. [2]

The risk of waste disposal is difficult to measure due to the necessity of gathering data over thousands of years. However, by employing process knowledge and risk management methodology, the risk associated with KBS-3 repositories have been thoroughly investigated in the assessments of long-term safety performed by SKB and Posiva.

Facilities

The first facilities using this method will be located in Östhammar, Sweden, next to the Forsmark Nuclear Power Plant, and in Eurajoki, Finland, at the Onkalo spent nuclear fuel repository next to the Olkiluoto Nuclear Power Plant. [3] In 2019, Posiva Ltd. announced that the construction of the spent nuclear fuel handling facility for Onkalo and installation of the requisite equipment in the Onkalo tunnels will begin. [4] The contract was awarded to Skanska, and the expected date of completion will be in summer 2022. The operation of the facility will begin in the 2020s. [5]

The Östhammar facility will have space for 6,000 capsules and the plan is to deposit 200 capsules into storage annually.

Criticism

In 2012, a research group at the Royal Institute of Technology in Stockholm, Sweden, published research that suggests that the copper capsules of KBS-3 are not as corrosion-proof as SKB and Posiva claim. [6]

In response, STUK (the Finnish nuclear safety office) asked Posiva for further explanation. Posiva dismissed the independent research in Sweden and Finland, referring to its own safety studies. [7] SKB undertook follow-up studies, which indicated that the corrosion process does not exist, and that the initial experiments were not correctly executed and/or the wrong conclusions were drawn. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Radioactive waste</span> Unwanted or unusable radioactive materials

Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.

<span class="mw-page-title-main">Yucca Mountain nuclear waste repository</span> Unused deep geological repository facility in Nevada, US

The Yucca Mountain Nuclear Waste Repository, as designated by the Nuclear Waste Policy Act amendments of 1987, is a proposed deep geological repository storage facility within Yucca Mountain for spent nuclear fuel and other high-level radioactive waste in the United States. The site is on federal land adjacent to the Nevada Test Site in Nye County, Nevada, about 80 mi (130 km) northwest of the Las Vegas Valley.

<span class="mw-page-title-main">Waste Isolation Pilot Plant</span> Deep geological repository for radioactive waste

The Waste Isolation Pilot Plant, or WIPP, is the world's third deep geological repository licensed to store transuranic radioactive waste for 10,000 years. The storage rooms at the WIPP are 2,150 feet underground in a salt formation of the Delaware Basin. The waste is from the research and production of United States nuclear weapons only. The plant started operation in 1999, and the project is estimated to cost $19 billion in total.

Features, Events, and Processes (FEP) are terms used in the fields of radioactive waste management, carbon capture and storage, and hydraulic fracturing to define relevant scenarios for safety assessment studies. For a radioactive waste repository, features would include the characteristics of the site, such as the type of soil or geological formation the repository is to be built on or under. Events would include things that may or will occur in the future, like, e.g., glaciations, droughts, earthquakes, or formation of faults. Processes are things that are ongoing, such as the erosion or subsidence of the landform where the site is located on, or near.

<span class="mw-page-title-main">High-level waste</span> Highly radioactive waste material

High-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms:

<span class="mw-page-title-main">Nuclear Waste Policy Act</span> 1982 United States federal law

The Nuclear Waste Policy Act of 1982 is a United States federal law which established a comprehensive national program for the safe, permanent disposal of highly radioactive wastes.

<span class="mw-page-title-main">Deep geological repository</span> Long term storage for radioactive and hazardous waste

A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment. It entails a combination of waste form, waste package, engineered seals and geology that is suited to provide a high level of long-term isolation and containment without future maintenance. This will prevent any radioactive dangers. A number of mercury, cyanide and arsenic waste repositories are operating worldwide including Canada and Germany and a number of radioactive waste storages are under construction with the Onkalo in Finland being the most advanced.

<span class="mw-page-title-main">Spent nuclear fuel</span> Nuclear fuel thats been irradiated in a nuclear reactor

Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor. It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and depending on its point along the nuclear fuel cycle, it may have considerably different isotopic constituents. The term "fuel" is slightly confusing, as it implies a combustion of some type, which does not occur in a nuclear power plant. Nevertheless, this term is generally accepted.

<span class="mw-page-title-main">Gorleben</span> Municipality in Lower Saxony, Germany

Gorleben is a small municipality (Gemeinde) in the Gartow region of the Lüchow-Dannenberg district in the far north-east of Lower Saxony, Germany, a region also known as the Wendland.

<span class="mw-page-title-main">Clab</span>

The Clab, also known as Centralt mellanlager för använt kärnbränsle is an interim radioactive waste repository located at Oskarshamn Nuclear Power Plant about 25 km north of Oskarshamn. Clab used to be owned by Oskarshamnsverkets Kraftgrupp AB (OKG) but is now owned by Svensk Kärnbränslehantering Aktiebolag (SKB). It was opened in 1985 for the storage of spent nuclear fuel from all Swedish nuclear power plants. The fuel is stored for 30 to 40 years, in preparation for final storage.

Deep borehole disposal (DBD) is the concept of disposing high-level radioactive waste from nuclear reactors in extremely deep boreholes instead of in more traditional deep geological repositories that are excavated like mines. Deep borehole disposal seeks to place the waste as much as five kilometres (3 mi) beneath the surface of the Earth and relies primarily on the thickness of the natural geological barrier to safely isolate the waste from the biosphere for a very long period of time so that it should not pose a threat to humans and the environment. The concept was originally developed in the 1970s, but in 2014, a proposal for a first experimental borehole was proposed by a consortium headed by Sandia National Laboratories.

<span class="mw-page-title-main">High-level radioactive waste management</span> Management and disposal of highly radioactive materials

High-level radioactive waste management concerns how radioactive materials created during production of nuclear power and nuclear weapons are dealt with. Radioactive waste contains a mixture of short-lived and long-lived nuclides, as well as non-radioactive nuclides. There was reportedly some 47,000 tonnes of high-level nuclear waste stored in the United States in 2002.

<i>Into Eternity</i> (film) 2010 Danish film

Into Eternity is a 2010 Danish documentary film directed by Michael Madsen, released in 2010. It follows the construction of the Onkalo waste repository at the Olkiluoto Nuclear Power Plant on the island of Olkiluoto, Finland. Director Michael Madsen questions Onkalo's intended eternal existence, addressing an audience in the remote future.

<span class="mw-page-title-main">Schikorr reaction</span> Transformation of Fe(OH)2 into Fe3O4 with hydrogen release

The Schikorr reaction formally describes the conversion of the iron(II) hydroxide (Fe(OH)2) into iron(II,III) oxide (Fe3O4). This transformation reaction was first studied by Gerhard Schikorr. The global reaction follows:

<span class="mw-page-title-main">Äspö Hard Rock Laboratory</span>

Äspö Hard Rock Laboratory (Äspölaboratoriet) is a research site located outside Oskarshamn in Kalmar County, Sweden. The laboratory is located in the Misterhult archipelago, near the Oskarshamn Nuclear Power Plant .

<span class="mw-page-title-main">Onkalo spent nuclear fuel repository</span>

The Onkalo spent nuclear fuel repository is a deep geological repository for the final disposal of spent nuclear fuel. It is near the Olkiluoto Nuclear Power Plant in the municipality of Eurajoki, on the west coast of Finland. It is being constructed by Posiva, and is based on the KBS-3 method of nuclear waste burial developed in Sweden by Svensk Kärnbränslehantering AB (SKB). The facility is expected to be operational in 2023.

Posiva Oy is a Finnish company with headquarters in the municipality of Eurajoki, Finland. It was founded in 1995 by Teollisuuden Voima and Fortum, two Finnish nuclear plant operators, for researching and creating a method of final disposal of spent nuclear fuel from their plants.

<span class="mw-page-title-main">Blue Ribbon Commission on America's Nuclear Future</span>

A Blue Ribbon Commission on America's Nuclear Future was appointed by President Obama to look into future options for existing and future nuclear waste, following the ending of work on the incomplete Yucca Mountain Repository. At present, there are 70 nuclear power plant sites where 65,000 tons of spent fuel is stored in the USA. Each year, more than 2,000 tons are added to this total. Nine states have "explicit moratoria on new nuclear power until a storage solution emerges". A deep geological repository seems to be the favored approach to storing nuclear waste.

The Czech Radioactive Waste Repository Authority (SÚRAO) was established on 1 June 1997 as a state organisation established by the Ministry of Industry and Trade. In 2001, SÚRAO assumed the status of a government agency. The Authority is headed by its managing director, Dr. Jiří Slovák. The governing body of SÚRAO consists of its Board which is made up of representatives from the government, radioactive waste producers and the general public. The managing director and members of the Board of SÚRAO are directly appointed by the Minister of Industry and Trade.

<span class="mw-page-title-main">Horizontal drillhole disposal</span>

Deep horizontal drillhole disposal is the concept of disposing of high-level radioactive waste from a nuclear reactor in deep horizontal boreholes instead of in more traditional deep geological repositories that are excavated like mines. The design concept is intended to improve upon the vertical borehole concept developed by Sandia National Laboratories, by utilizing modern advancements in directional drilling technology as well as using isotopic methods to measure the affinity a host rock has for isolation.

References

  1. "Our methodology".
  2. McEwan, Tim; Savage, David (1996). The Scientific and Regulatory Basis for Geological Disposal of Nuclear Waste. New York: J. Wiley & Sons. Retrieved 1 February 2016.
  3. Jason Deign (2012-01-18). "Final repositories: deep knowledge in the Nordics". Nuclear Energy Insider. Archived from the original on 2012-03-06. Retrieved 2012-12-30.
  4. "Eurajoen Olkiluotoon jätti-investointi – ydinjäteyhtiö Posiva alkaa rakentaa kapselointi- ja loppusijoituslaitosta". Yle Uutiset.
  5. "Skanska rakentaa Posivalle käytetyn ydinpolttoaineen kapselointilaitoksen – "Turun linnan kokoinen rakennus"". Yle Uutiset.
  6. Peter Szakálos and Seshadri Seetharaman (2012). "Technical Note 2012:17: Corrosion of copper canister" (PDF). SSM Rapport. Strålsäkerhetsmyndigheten. ISSN   2000-0456 . Retrieved 2012-12-30.
  7. "Ydinjätteen loppusijoitus ajautumassa vaikeuksiin". YLE. 2012-12-18. Retrieved 2012-12-30.
  8. "Samlad redovisning om kopparkorrosion i syrgasfritt vatten" (PDF). SKB. 2015-03-12. Retrieved 2015-08-09.