Kathryn Mary Murphy is a Canadian neuroscientist and professor who studies development and plasticity of the brain.
She has been a professor at McMaster University since 1994, where she founded the neuroscience program and prior to that was at McGill University where she won a University Research Fellowship [1] from NSERC and a Sloan Research Fellowship [2] from the Alfred P. Sloan Foundation.
Born in Calgary, Alberta, she grew up in Burlington, Ontario attending the University of Western Ontario for her bachelor's degree and Dalhousie University for her Masters and Ph.D. degrees. While at Dalhousie she held a Ross C. Purse scholarship [3] from the CNIB and an NSERC Doctoral scholarship. [4]
Her academic training took her to the University of California, Berkeley School of Optometry on postdoctoral fellowships from Fight For Sight and NSERC. For ten years (2007-2017), she was the Director of the McMaster Integrated Neuroscience Discovery & Study program (MiNDS).
Her research includes studying developmental and lifespan changes in the human brain. [5] [6] [7] [8] [9] [10] [11] She has served as a Chair, Scientific Officer and Reviewer for the Canadian Institutes of Health Research (CIHR) grant selection panels and was the editor of the Synaptosomes book ( ISBN 978-1-4939-8738-2) published in 2018 in the NeuroMethods Series by Springer-Nature.
The entorhinal cortex (EC) is a major part of the hippocampal formation of the brain, and is reciprocally connected with the hippocampus.
Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping or neural oscillation. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition, environmental influences, practice, and psychological stress.
Affective neuroscience is the study of how the brain processes emotions. This field combines neuroscience with the psychological study of personality, emotion, and mood. The basis of emotions and what emotions are remains an issue of debate within the field of affective neuroscience.
In cognitive science and neuropsychology, executive functions are a set of cognitive processes that are necessary for the cognitive control of behavior: selecting and successfully monitoring behaviors that facilitate the attainment of chosen goals. Executive functions include basic cognitive processes such as attentional control, cognitive inhibition, inhibitory control, working memory, and cognitive flexibility. Higher-order executive functions require the simultaneous use of multiple basic executive functions and include planning and fluid intelligence.
The frontal eye fields (FEF) are a region located in the frontal cortex, more specifically in Brodmann area 8 or BA8, of the primate brain. In humans, it can be more accurately said to lie in a region around the intersection of the middle frontal gyrus with the precentral gyrus, consisting of a frontal and parietal portion. The FEF is responsible for saccadic eye movements for the purpose of visual field perception and awareness, as well as for voluntary eye movement. The FEF communicates with extraocular muscles indirectly via the paramedian pontine reticular formation. Destruction of the FEF causes deviation of the eyes to the ipsilateral side.
Adele Dorothy Diamond is a professor of neuroscience at the University of British Columbia, where she is currently a Tier 1 Canada Research Chair in Developmental Cognitive Neuroscience. One of the pioneers in the field of developmental cognitive neuroscience, Diamond researches how executive functions are affected by biological and environmental factors, especially in children. Her discoveries have improved treatment for disorders such as phenylketonuria and attention-deficit hyperactivity disorder, and they have impacted early education.
Pasko Rakic is a Yugoslav-born American neuroscientist, who presently works in the Yale School of Medicine Department of Neuroscience in New Haven, Connecticut. His main research interest is in the development and evolution of the human brain. He was the founder and served as Chairman of the Department of Neurobiology at Yale, and was founder and Director of the Kavli Institute for Neuroscience. He is best known for elucidating the mechanisms involved in development and evolution of the cerebral cortex. In 2008, Rakic shared the inaugural Kavli Prize in Neuroscience. He is currently the Dorys McConell Duberg Professor of Neuroscience, leads an active research laboratory, and serves on Advisory Boards and Scientific Councils of a number of Institutions and Research Foundations.
The dorsal attention network (DAN), also known anatomically as the dorsal frontoparietal network (D-FPN), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF). It is named and most known for its role in voluntary orienting of visuospatial attention.
The retrosplenial cortex (RSC) is a cortical area in the brain comprising Brodmann areas 29 and 30. It is secondary association cortex, making connections with numerous other brain regions. The region's name refers to its anatomical location immediately behind the splenium of the corpus callosum in primates, although in rodents it is located more towards the brain surface and is relatively larger. Its function is currently not well understood, but its location close to visual areas and also to the hippocampal spatial/memory system suggest it may have a role in mediating between perceptual and memory functions, particularly in the spatial domain. However, its exact contribution to either space or memory processing has been hard to pin down.
In human neuroanatomy, brain asymmetry can refer to at least two quite distinct findings:
In neuroscience, the default mode network (DMN), also known as the default network, default state network, or anatomically the medial frontoparietal network (M-FPN), is a large-scale brain network primarily composed of the dorsal medial prefrontal cortex, posterior cingulate cortex, precuneus and angular gyrus. It is best known for being active when a person is not focused on the outside world and the brain is at wakeful rest, such as during daydreaming and mind-wandering. It can also be active during detailed thoughts related to external task performance. Other times that the DMN is active include when the individual is thinking about others, thinking about themselves, remembering the past, and planning for the future.
Richard Alan Andersen is an American neuroscientist. He is the James G. Boswell Professor of Neuroscience at the California Institute of Technology in Pasadena, California. His research focuses on visual physiology with an emphasis on translational research to humans in the field of neuroprosthetics, brain-computer interfaces, and cortical repair.
Yi Zuo is a neuroscience professor and researcher born in China. She studies molecular, cellular and developmental biology. Zuo is currently an associate professor of Molecular, Cell and Developmental Biology at the University of California, Santa Cruz (UCSC), where she also heads a research lab.
Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors (INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, among others.
Christopher A. Walsh is the Bullard Professor of Neurology at Harvard Medical School, Chief of the Division of Genetics at Children's Hospital Boston, Investigator of the Howard Hughes Medical Institute, and the former Director of the Harvard-MIT MD-PhD Program. His research focuses on genetics of human cortical development and somatic mutations contributions to human brain diseases.
John Douglas (Doug) Crawford is a Canadian neuroscientist and the scientific director of the Vision: Science to Applications (VISTA) program. He is a professor at York University where he holds the Canada Research Chair in Visuomotor Neuroscience and the title of Distinguished Research Professor in Neuroscience.
Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.
Moriel Zelikowsky is a neuroscientist at University of Utah School of Medicine. Her laboratory studies the brain circuits and neural mechanisms underlying stress, fear, and social behavior. Her previous work includes fear and the hippocampus, and the role of neuropeptide Tac2 in social isolation.
Jessica Cardin is an American neuroscientist who is an associate professor of neuroscience at Yale University School of Medicine. Cardin's lab studies local circuits within the primary visual cortex to understand how cellular and synaptic interactions flexibly adapt to different behavioral states and contexts to give rise to visual perceptions and drive motivated behaviors. Cardin's lab applies their knowledge of adaptive cortical circuit regulation to probe how circuit dysfunction manifests in disease models.
Matthew D. Sacchet is an American neuroscientist and Assistant Professor of Psychiatry at Harvard University. At Massachusetts General Hospital, Sacchet directs the Meditation Research Program. His research focuses on advancing the science of meditation and includes studies of brain structure and function using multimodal neuroimaging, in addition to neurofeedback, clinical trials, and computational approaches. He is notable for his work at the intersection of neuroscience, meditation, and mental illness. His work has been cited over 4,500 times and covered by major media outlets including CBS, NBC, NPR, Time, and The Wall Street Journal. In 2017 Forbes Magazine selected Sacchet for the “30 Under 30”.