Ken A. Dill

Last updated
Ken A. Dill
Born1947
Citizenship American
Alma mater Massachusetts Institute of Technology
University of California, San Diego
Known for Hydrophobic-polar protein folding model
Awards Max Delbruck Prize (2019)
Scientific career
Fields Physics, Chemistry, Biology, Computational Biology
Institutions Stony Brook University
Doctoral advisor Bruno H. Zimm

Kenneth Austin Dill (born 1947) is a biophysicist and chemist best known for his work in folding pathways of proteins. He is the director of the Louis and Beatrice Laufer Center for Physical and Quantitative Biology at Stony Brook University. He was elected a member of the National Academy of Sciences in 2008. [1] He was elected to the American Academy of Arts and Sciences in 2014. He has been a co-editor or editor of the Annual Review of Biophysics since 2013. [2]

Life

Dill was born in Oklahoma City, Oklahoma in 1947. [1] He attended MIT where he obtained a S.B. and S.M. in Mechanical Engineering (1971). [1] He obtained his Ph.D. in 1978 at UCSD in the Biology Department working with Bruno H. Zimm, studying the biophysical properties of DNA molecules. Towards the end of his doctoral research, he had become interested in the mechanics of protein folding, specifically the way that the RNA-degrading enzyme Ribonuclease, folds into its native state. But before tackling the protein folding problem, he moved to Stanford University and worked with Paul J. Flory in Chemistry, for his post-doctoral training. After this, he went to the University of California, San Francisco, where he popularized the idea that any given protein's surrounding environment places constraints upon it, such that the shapes that it can assume are dramatically decreased. Dill introduced a toy model consisting of tethered beads on a lattice to mimic a folding protein, with beads of the same type (i.e. hydrophobic) attracting each other. Mathematically, the folding process can be visualized as a funnel, in which the several unfolded and misfolded high energy states of the protein occupy positions nearer the top of the funnel, but once the protein begins to fold, its options narrow down with the decrease in conformational entropy and the chain rapidly collapses into its most stable, low energy state. This state is sometimes identified with the native state of a natural protein. In Dill's words, "Like skiers all arriving at the same lodge, the folding protein gets systematically closer to the desired protein shape as it moves down the funnel". [1]

Related Research Articles

<span class="mw-page-title-main">Protein folding</span> Change of a linear protein chain to a 3D structure

Protein folding is the physical process by which a protein chain is translated into its native three-dimensional structure, typically a "folded" conformation, by which the protein becomes biologically functional. Via an expeditious and reproducible process, a polypeptide folds into its characteristic three-dimensional structure from a random coil. Each protein exists first as an unfolded polypeptide or random coil after being translated from a sequence of mRNA into a linear chain of amino acids. At this stage, the polypeptide lacks any stable three-dimensional structure. As the polypeptide chain is being synthesized by a ribosome, the linear chain begins to fold into its three-dimensional structure.

<span class="mw-page-title-main">Alan Fersht</span> British chemist

Sir Alan Roy Fersht is a British chemist at the MRC Laboratory of Molecular Biology, Cambridge, and an Emeritus Professor in the Department of Chemistry at the University of Cambridge. He was Master of Gonville and Caius College, Cambridge from 2012 to 2018. He works on protein folding, and is sometimes described as a founder of protein engineering.

Lattice proteins are highly simplified models of protein-like heteropolymer chains on lattice conformational space which are used to investigate protein folding. Simplification in lattice proteins is twofold: each whole residue is modeled as a single "bead" or "point" of a finite set of types, and each residue is restricted to be placed on vertices of a lattice. To guarantee the connectivity of the protein chain, adjacent residues on the backbone must be placed on adjacent vertices of the lattice. Steric constraints are expressed by imposing that no more than one residue can be placed on the same lattice vertex.

M. R. N. Murthy, was a professor of molecular biophysics at the Indian Institute of Science, IISc, Bangalore. He currently teaches at the Institute of Bioinformatics and Applied Biotechnology, Bengaluru. His chief contributions are in the area of X-ray crystallography. He was awarded the Shanti Swarup Bhatnagar award for outstanding contribution to physical sciences, which is the highest honour for a scientist in India, in the year 1992.

<span class="mw-page-title-main">Folding funnel</span>

The folding funnel hypothesis is a specific version of the energy landscape theory of protein folding, which assumes that a protein's native state corresponds to its free energy minimum under the solution conditions usually encountered in cells. Although energy landscapes may be "rough", with many non-native local minima in which partially folded proteins can become trapped, the folding funnel hypothesis assumes that the native state is a deep free energy minimum with steep walls, corresponding to a single well-defined tertiary structure. The term was introduced by Ken A. Dill in a 1987 article discussing the stabilities of globular proteins.

Hydrophobic collapse is a proposed process for the production of the 3-D conformation adopted by polypeptides and other molecules in polar solvents. The theory states that the nascent polypeptide forms initial secondary structure creating localized regions of predominantly hydrophobic residues. The polypeptide interacts with water, thus placing thermodynamic pressures on these regions which then aggregate or "collapse" into a tertiary conformation with a hydrophobic core. Incidentally, polar residues interact favourably with water, thus the solvent-facing surface of the peptide is usually composed of predominantly hydrophilic regions.

<span class="mw-page-title-main">Molecular biophysics</span> Interdisciplinary research area

Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. It seeks to understand biomolecular systems and explain biological function in terms of molecular structure, structural organization, and dynamic behaviour at various levels of complexity. This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating minute living structures, as well as novel experimental approaches.

<span class="mw-page-title-main">Anfinsen's dogma</span> Molecular biology hypothesis

Anfinsen's dogma, also known as the thermodynamic hypothesis, is a postulate in molecular biology. It states that, at least for a small globular protein in its standard physiological environment, the native structure is determined only by the protein's amino acid sequence. The dogma was championed by the Nobel Prize Laureate Christian B. Anfinsen from his research on the folding of ribonuclease A. The postulate amounts to saying that, at the environmental conditions at which folding occurs, the native structure is a unique, stable and kinetically accessible minimum of the free energy. In other words, there are three conditions for formation of a unique protein structure:

<span class="mw-page-title-main">Protein domain</span> Self-stable region of a proteins chain that folds independently from the rest

In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of several domains, and a domain may appear in a variety of different proteins. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. In general, domains vary in length from between about 50 amino acids up to 250 amino acids in length. The shortest domains, such as zinc fingers, are stabilized by metal ions or disulfide bridges. Domains often form functional units, such as the calcium-binding EF hand domain of calmodulin. Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins.

<span class="mw-page-title-main">Peter Guy Wolynes</span> American theoretical chemist and physicist

Peter Guy Wolynes is an American theoretical chemist and physicist. Since 2011 he has been a Bullard-Welch Foundation Professor of Science and Professor of Chemistry at Rice University. He is widely recognized for his significant contributions to the theories of protein folding, glasses, and gene networks. Previously he was James R. Eiszner Professor at the University of Illinois at Urbana-Champaign, and the Francis H.C. Crick Chair of Physical Sciences at the University of California, San Diego.

José Nelson Onuchic is a Brazilian and American physicist, the Harry C & Olga K Wiess Professor of Physics at Rice University. He does research in molecular biophysics, condensed matter chemistry, and genetic networks, and is known for the folding funnel hypothesis stating that the native state of a protein is a deep minimum of free energy for the protein's natural conditions among its possible configurations. He was the college master for Lovett College at Rice University from 2014 to 2019.

Sheena Elizabeth Radford FRS FMedSci is a British biophysicist, and Astbury Professor of Biophysics in the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology at the University of Leeds. Radford is the Associate Editor of the Journal of Molecular Biology.

Stephen H. White is an American Biophysicist, academic, and author. He is a Professor Emeritus of Physiology and Biophysics at the University of California, Irvine.

<span class="mw-page-title-main">Ramakrishna V. Hosur</span> Indian biophysical scientist (born 1953)

Professor Ramakrishna Vijayacharya Hosur is an Indian biophysical scientist, known for his expertise in the areas of nuclear magnetic resonance and molecular biophysics. The Government of India honoured him, in 2014, by awarding him the Padma Shri, the fourth highest civilian award, for his contributions to the fields of science and technology.

<span class="mw-page-title-main">Jane Clarke (scientist)</span> English biochemist and academic

Jane Clarke is an English biochemist and academic. Since October 2017, she has served as President of Wolfson College, Cambridge. She is also Professor of Molecular Biophysics, a Wellcome Trust Senior Research Fellow in the Department of Chemistry at the University of Cambridge. She was previously a Fellow of Trinity Hall, Cambridge.

Kalpathy Ramaier Katchap Easwaran is an Indian molecular biophysicist, academic and a former Astra Chair Professor and chairman of the department of molecular biophysics of the Indian Institute of Science. He is known for his contributions in the development of anti-fungal drugs and for his researches on ionophores and ion-transport across membranes. He is an elected fellow of the Indian National Science Academy and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1984, for his contributions to biological sciences.

Jayant Bhalchandra Udgaonkar is an Indian biochemist, molecular biologist, academic and the director of the Indian Institute of Science Education and Research, Pune. He was previously a senior professor at the National Centre for Biological Sciences. A J. C. Bose National Fellow, he is known for his studies on protein folding. He is an elected fellow of the Indian Academy of Sciences, Indian National Science Academy and The World Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 2000, for his contributions to biological sciences. He is the son of noted scientist Padmabhushan Bhalchandra Udgaonkar.

Vinod Bhakuni (1962–2011) was an Indian molecular biophysicist and the head of the Molecular and Structural Biology Division of the Central Drug Research Institute (CDRI). He was the founder of the Protein Chemistry laboratory of CDRI and was known for his contributions to the study of protein folding. A recipient of the National Bioscience Award for Career Development, he was an elected fellow of the Indian Academy of Sciences, Indian National Science Academy and the National Academy of Sciences, India. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 2006, for his contributions to biological sciences.

Ramanathan Sowdhamini is an Indian computational biologist, bioinformatician and a professor at the department of biochemistry, biophysics and bioinformatics of the National Centre for Biological Sciences, a TIFR research facility located in Bengaluru. Known for computational studies in the field of Protein Science, Sowdhamini is also associated with the Institute for Stem Cell Biology and Regenerative Medicine as a collaborator and is an elected fellow of the Indian Academy of Sciences as well as the Indian National Science Academy. The Department of Biotechnology of the Government of India awarded her the National Bioscience Award for Career Development, one of the highest Indian science awards, for her contributions to biosciences in 2007.

References

  1. 1 2 3 4 S. Gupta, 2012, Profile of Ken A. Dill, Proc. Natl. Acad. Sci. U.S.A.109(9):3194–3196 (February 28, 2012), DOI: 10.1073/pnas.1200576109, see , accessed 6 June 2014.
  2. Rees, Douglas C. (2012). "Preface". Annual Review of Biophysics. 41. doi:10.1146/annurev-bb-41-050712-100001.