Kenny-Caffey syndrome

Last updated
Kenny-Caffey Syndrome Type 2 (KCS2)
Symptoms Dwarfism, Cortical Thickening of Tubular Bones, and Transient Hypocalcemia
Usual onsetIs inherited and phenotypically present at birth
CausesType 2: Caused by heterozygous mutation in the FAM111A gene (615292) on chromosome 11q12.
TreatmentVitamin D, calcium, and iron supplements
FrequencyExtremely rare: Fewer than 60 cases reported in medical literature

Kenny-Caffey syndrome type 2 (KCS2) is an extremely rare autosomal dominant genetic condition characterized by dwarfism, hypermetropia, microphthalmia, and skeletal abnormalities. [1] This subtype of Kenny-Caffey syndrome is caused by a heterozygous mutation in the FAM111A gene (615292) on chromosome 11q12. [2]

Contents

This condition is extremely rare, as fewer than 60 confirmed cases have been reported in medical literature. [3] KCS2 affects males and females in equal proportions, and is most often sporadic. However it can be transmitted by an affected mother to their offspring, like in the original family described by Kenny and Caffey. [1] Other genetic variants in the same gene FAM111A may produce the related, but more severe disorder, osteocraniostenosis. [4]

The condition was originally described by Frederic Kenny and Louis Linarelli in 1966 in a mother and her son. [5] In 1967, John Caffey, a pediatric radiologist, described the radiographic aspects of the same family. [6] The condition was since called the Kenny-Caffey Syndrome. A somewhat similar, but recessively inherited condition known as Kenny-Caffey Syndrome Type 1 (KCS1) also exists. [7] This recessive condition includes intellectual disability as a common symptom (unlike KCS2), and is also known as the Sanjad-Sakati syndrome or Hypoparathyroidism-Retardation-Dysmorphism Syndrome. [8] [9]

Signs and Symptoms

Kenny-Caffey syndrome type 2 is often congenital (present at birth), as low birth weight is one of the first symptoms. Individuals with the condition have various bone abnormalities that affect the skeleton, head, and eyes. [1] Most affected individuals also exhibit dwarfism, as the adult height often ranges from 48 to 59 inches. However, contrary to KCS1, individuals with KCS2 have normal intelligence levels. [10]

Various bones are affected by KCS2, as affected individuals often have thickened outer layers of long bones, and abnormally thin marrow cavities (medullary stenosis). Some individuals also exhibit the hardening of some bones (osteosclerosis). Additionally, individuals also have an abnormally large head circumference (macrocephaly) with a prominent forehead due to an abnormally large anterior fontanelle that closes late. Affected individuals may have unusually small eyes (microphthalmia), swelling of the optic disk due to leakage of cerebrospinal fluid (papilledema), and farsightedness. [11] [1]

Hypocalcemia (low levels of calcium in the blood) is also common, usually occurring within two to three months after birth. This is due to the improper regulation of the parathyroid hormone (PTH) along with vitamin D and the hormone calcitonin, which regulates the calcium levels in the blood. The lack of PTH may be due to the improper function or absence of the parathyroid glands in individuals with KCS2. Symptoms often include weakness, muscle cramps, excessive nervousness, loss of memory, headaches, and abnormal sensations such as tingling and numbness of the hands. [12] [1]

People affected by KCS1 have most of the above-mentioned abnormalities and symptoms. They may also exhibit liver disease during the first month of life, abnormally low levels of white blood cells, improper function of T-cells, intellectual disabilities, and/or underdeveloped, malformed nails. [13]

Diagnosis

Due to the rarity of the disease, there is no definitive method of testing for KCS2. Diagnosis of KCS2 usually involves using x-ray studies of the skeleton to reveal distinctive thickening of the outer layers (cortexes) of long bones along with unusually thin marrow cavities. Blood tests can detect episodes of low levels of calcium in the blood (hypocalcemia). [11] [1]

Management or Treatment

Treatment may be required to control hypocalcemia and to correct the ocular refraction anomalies. [1] Common methods of controlling hypocalcemia include the taking of oral calcium and vitamin D supplements. [14] Other than this there is a lack of well established methods treatment and the symptoms can only be managed by the aforementioned methods.

Genetics

Kenny-Caffey syndrome type 2 has an autosomal dominant inheritance pattern, not to be confused with the autosomal recessive Kenny-Caffey syndrome type 1. [5] [13] The mutations responsible for KCS2 are thought to be a result of heterozygous mutations, or compound heterozygosity; specifically, it is thought to be caused by the substitution or deletion of single amino acids that are phylogenetically conserved in the FAM111A gene. [15] The FAM111A gene is located at 11q12.1 and mutations of the gene are not only responsible for KCS2, but also Gracile bone dysplasia (osteocraniostenosis). [16]

The gene FAM111A codes for a 611 amino acid protein that resembles a trypsin-like-peptidase, but the protein's native function is unknown. What is apparent, however, is that FAM111A codes for a protein that is crucial to pathways that govern parathyroid hormone production, calcium homeostasis, and skeletal development and growth. Very little is known about differing severities of Kenny-Caffey syndromes because of the very limited number of affected individuals, but it is known that OCS and KCS2 have different severities and they result from mutations at the same locus. [15]

Epidemiology

Because there have only been 60 reported cases of Kenny-Caffey Syndrome in medical literature, there are not enough cases to make the generalizations required to develop an epidemiological understanding of this disease.

Related Research Articles

<span class="mw-page-title-main">Hypocalcemia</span> Low calcium levels in ones blood serum

Hypocalcemia is a medical condition characterized by low calcium levels in the blood serum. The normal range of blood calcium is typically between 2.1–2.6 mmol/L, while levels less than 2.1 mmol/L are defined as hypocalcemic. Mildly low levels that develop slowly often have no symptoms. Otherwise symptoms may include numbness, muscle spasms, seizures, confusion, or in extreme cases cardiac arrest.

<span class="mw-page-title-main">Primary familial brain calcification</span> Indiana genetic disorder involving calcification of the basal ganglia

Primary familial brain calcification (PFBC), also known as familial idiopathic basal ganglia calcification (FIBGC) and Fahr's disease, is a rare, genetically dominant, inherited neurological disorder characterized by abnormal deposits of calcium in areas of the brain that control movement. Through the use of CT scans, calcifications are seen primarily in the basal ganglia and in other areas such as the cerebral cortex.

<span class="mw-page-title-main">Immunodeficiency–centromeric instability–facial anomalies syndrome</span> Medical condition

ICF syndrome is a very rare autosomal recessive immune disorder.

<span class="mw-page-title-main">Albright's hereditary osteodystrophy</span> Form of osteodystrophy and a rare human disease

Albright's hereditary osteodystrophy is a form of osteodystrophy, and is classified as the phenotype of pseudohypoparathyroidism type 1A; this is a condition in which the body does not respond to parathyroid hormone.

Pseudohypoparathyroidism is a rare autosomal dominant genetic condition associated primarily with resistance to the parathyroid hormone. Those with the condition have a low serum calcium and high phosphate, but the parathyroid hormone level (PTH) is inappropriately high. Its pathogenesis has been linked to dysfunctional G proteins. Pseudohypoparathyroidism is a very rare disorder, with estimated prevalence between 0.3 and 1.1 cases per 100000 population depending on geographic location.

<span class="mw-page-title-main">SCARF syndrome</span> Medical condition

SCARF syndrome is a rare syndrome characterized by skeletal abnormalities, cutis laxa, craniostenosis, ambiguous genitalia, psychomotor retardation, and facial abnormalities. These characteristics are what make up the acronym SCARF. It shares some features with Lenz-Majewski hyperostotic dwarfism. It is a very rare disease with an incidence rate of approximately one in a million newborns. It has been clinically described in two males who were maternal cousins, as well as a 3-month-old female. Babies affected by this syndrome tend to have very loose skin, giving them an elderly facial appearance. Possible complications include dyspnea, abdominal hernia, heart disorders, joint disorders, and dislocations of multiple joints. It is believed that this disease's inheritance is X-linked recessive.

Acrodysostosis is a rare congenital malformation syndrome which involves shortening of the interphalangeal joints of the hands and feet, intellectual disability in approximately 90% of affected children, and peculiar facies. Other common abnormalities include short head, small broad upturned nose with flat nasal bridge, protruding jaw, increased bone age, intrauterine growth retardation, juvenile arthritis and short stature. Further abnormalities of the skin, genitals, teeth, and skeleton may occur.

<span class="mw-page-title-main">TBCE</span> Protein-coding gene in the species Homo sapiens

Tubulin-specific chaperone E is a protein that in humans is encoded by the TBCE gene.

<span class="mw-page-title-main">Woodhouse–Sakati syndrome</span> Medical condition

Woodhouse–Sakati syndrome, is a rare autosomal recessive multisystem disorder which causes malformations throughout the body, and deficiencies affecting the endocrine system.

<span class="mw-page-title-main">Gerodermia osteodysplastica</span> Medical condition

Gerodermia osteodysplastica (GO) is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.

Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting, a caudal appendage, growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Georges Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the COLLEC11 and MASP1 genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.

<span class="mw-page-title-main">Pontocerebellar hypoplasia</span> Group of neurodegenerative disorders

Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare neurodegenerative disorders caused by genetic mutations and characterised by progressive atrophy of various parts of the brain such as the cerebellum or brainstem. Where known, these disorders are inherited in an autosomal recessive fashion. There is no known cure for PCH.

<span class="mw-page-title-main">Wiedemann–Rautenstrauch syndrome</span> Medical condition

Wiedemann–Rautenstrauch (WR) syndrome, also known as neonatal progeroid syndrome, is a rare autosomal recessive progeroid syndrome. There have been over 30 cases of WR. WR is associated with abnormalities in bone maturation, and lipids and hormone metabolism.

<span class="mw-page-title-main">X-linked recessive hypoparathyroidism</span> Medical condition

X-linked recessive hypoparathyroidism is a rare, congenital form of hypoparathyroidism.

<span class="mw-page-title-main">Sanjad–Sakati syndrome</span> Medical condition

Sanjad–Sakati syndrome is a rare autosomal recessive genetic condition seen in offspring of Middle Eastern origin. It was first described in Saudi Arabia, but has been seen in Qatari, Kuwaiti, Omani and other children from the Middle East as well as elsewhere. The condition is caused by mutations or deletions in the TBCE gene of Chromosome No.1.

<span class="mw-page-title-main">Family with sequence similarity 111 member a</span> Protein-coding gene in the species Homo sapiens

Family with sequence similarity 111 member A is a protein that in humans is encoded by the FAM111A gene.

Filippi syndrome, also known as Syndactyly Type I with Microcephaly and Mental Retardation, is a very rare autosomal recessive genetic disease. Only a very limited number of cases have been reported to date. Filippi Syndrome is associated with diverse symptoms of varying severity across affected individuals, for example malformation of digits, craniofacial abnormalities, intellectual disability, and growth retardation. The diagnosis of Filippi Syndrome can be done through clinical observation, radiography, and genetic testing. Filippi Syndrome cannot be cured directly as of 2022, hence the main focus of treatments is on tackling the symptoms observed on affected individuals. It was first reported in 1985.

<span class="mw-page-title-main">Waardenburg anophthalmia syndrome</span> Medical condition

Waardenburg anophthalmia syndrome is a rare autosomal recessive genetic disorder which is characterized by either microphthalmia or anophthalmia, osseous synostosis, ectrodactylism, polydactylism, and syndactylism. So far, 29 cases from families in Brazil, Italy, Turkey, and Lebanon have been reported worldwide. This condition is caused by homozygous mutations in the SMOC1 gene, in chromosome 14.

<span class="mw-page-title-main">Mandibulofacial dysostosis-microcephaly syndrome</span> Medical condition

Mandibulofacial dysostosis with microcephaly syndrome, also known as growth delay-intellectual disability-mandibulofacial dysostosis-microcephaly-cleft palate syndrome, mandibulofacial dysostosis, guion-almeida type, or simply as MFDM syndrome is a rare genetic disorder which is characterized by developmental delays, intellectual disabilities, and craniofacial dysmorphisms.

<span class="mw-page-title-main">SOFT syndrome</span> Medical condition

SOFT syndrome, also known for the name its acronym originates from: Short stature-onychodysplasia-facial dysmorphism-hypotrichosis syndrome, is a rare genetic disorder characterized by the presence of short stature, underdeveloped nails, facial dysmorphisms, and hair sparcity across the body. It is caused by homozygous, autosomal recessive mutations in the POC1A gene, located in the short arm of chromosome 3. Fewer than 15 cases have been described in the medical literature.

References

  1. 1 2 3 4 5 6 7 "Kenny-Caffey Syndrome".
  2. "OMIM Entry - # 127000 - KENNY-CAFFEY SYNDROME, TYPE 2; KCS2". www.omim.org. Retrieved 2022-03-23.
  3. NORD (2012). "Kenny-Caffey Syndrome".
  4. OMIM Entry - # 602361 - GRACILE BONE DYSPLASIA; GCLEB
  5. 1 2 Kenny, F.M., and Linarelli, L. (1966). Dwarfism and cortical thickening of tubular bones. Transient hypocalcemia in a mother and son. Am. J. Dis. Child. 111, 201–207
  6. Caffey, J. (1967). Congenital stenosis of medullary spaces in tubular bones and calvaria in two proportionate dwarfs— mother and son; coupled with transitory hypocalcemic tetany. Am. J. Roentgenol. Radium Ther. Nucl. Med. 100, 1–11
  7. Parvari, R., Hershkovitz, E., Grossman, N., Gorodischer, R., Loeys, B., Zecic, A., Mortier, G., Gregory, S., Sharony, R., Kam- bouris, M., et al.; HRD/Autosomal Recessive Kenny-Caffey Syndrome Consortium. (2002). Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat. Genet. 32, 448–452.
  8. Sanjad SA, Sakati NA, Abu-Osba YK, Kaddoura R, Milner RD. A new syndrome of congenital hypoparathyroidism, severe growth failure, and dysmorphic features. Arch Dis Child. 1991 Feb;66(2):193-6. doi: 10.1136/adc.66.2.193. PMID 2001103; PMCID: PMC1792808.
  9. OMIM Entry - # 241410 - HYPOPARATHYROIDISM-RETARDATION-DYSMORPHISM SYNDROME; HRDS
  10. "OMIM Entry - # 127000 - KENNY-CAFFEY SYNDROME, TYPE 2; KCS2". www.omim.org. Retrieved 13 March 2019.
  11. 1 2 Abdel-Al, Yaser K.; Auger, Louise T.; El-Gharbawy, Fatma (April 1989). "Kenny-Caffey Syndrome". Clinical Pediatrics. 28 (4): 175–179. doi:10.1177/000992288902800404. ISSN   0009-9228. PMID   2649298. S2CID   35634868.
  12. Bergada, I.; Schiffrin, A.; Abu Srair, H.; Kaplan, P.; Dornan, J.; Goltzman, D.; Hendy, G. N. (September 1988). "Kenny syndrome: description of additional abnormalities and molecular studies". Human Genetics. 80 (1): 39–42. doi:10.1007/bf00451452. ISSN   0340-6717. PMID   2843457. S2CID   35716402.
  13. 1 2 Franceschini, P.; Testa, A.; Bogetti, G.; Girardo, E.; Guala, A.; Lopez-Bell, G.; Buzio, G.; Ferrario, E.; Piccato, E. (1992-01-01). "Kenny-Caffey syndrome in two sibs born to consanguineous parents: Evidence for an autosomal recessive variant". American Journal of Medical Genetics. 42 (1): 112–116. doi:10.1002/ajmg.1320420123. ISSN   0148-7299. PMID   1308349.
  14. "Une passion pour la médecine de famille ancrée dans le relief accidenté du Bouclier canadien". Médecin de Famille Canadien: 866_pap. 2020-11-06. doi: 10.46747/cfp.6611866 . ISSN   0008-350X. PMID   33158910. S2CID   243338157.
  15. 1 2 Unger, Sheila; Górna, Maria W.; Le Béchec, Antony; Do Vale-Pereira, Sonia; Bedeschi, Maria Francesca; Geiberger, Stefan; Grigelioniene, Giedre; Horemuzova, Eva; Lalatta, Faustina; Lausch, Ekkehart; Magnani, Cinzia (June 2013). "FAM111A Mutations Result in Hypoparathyroidism and Impaired Skeletal Development". The American Journal of Human Genetics. 92 (6): 990–995. doi:10.1016/j.ajhg.2013.04.020. PMC   3675238 . PMID   23684011.
  16. "FAM111A FAM111 trypsin like peptidase A [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-03-24.