Knotted cord

Last updated

A knotted cord was a primitive surveyor's tool for measuring distances. It is a length of cord with knots at regular intervals. They were eventually replaced by surveyor's chains, which being made of metal were less prone to stretching and thus were more accurate and consistent.

Contents

Knotted cords were used by many ancient cultures. The Greek schoenus is referred to as a rope used to measure land. Ropes generally became cables and chains with Pythagoras making the Greek agros a chain of 10 stadia equal to a nautical mile c 540 BC. The Romans used a waxed cord for measuring distances.

A knotted cord 12 lengths long (the units do not matter) closed into a loop can be used to lay out a right angle by forming the loop of cord into a 3–4–5 triangle. This could be used for laying out the corner of a field or a building foundation, for instance.

Ancient Egypt

Knotted cords were used by rope stretchers, royal surveyors who measured out the sides of fields (Egyptian 3ht). The knotted cords (Egyptian ht) were 100 royal cubits in length, with a knot every hayt or 10 royal cubits. The rope stretchers stretched the rope in order to take the sag out, as well as to keep the measures uniform.

Since land in ancient Egypt was measured using several different units, there would have been knotted cords with the knots spaced in each unit. Among these were the mh t3 or land cubits, remen royal cubits, rods or ha3t, generally the lengths in multiples of 100 units. The longest measured length listed in the Rhind Mathematical Papyrus is a circumference of about a Roman mile with a diameter of 9 khet.

Despite many popular claims, there is no surviving evidence that the 3-4-5 triangle, and by implication the Pythagoras' theorem, was used in Ancient Egypt to lay out right angles, such as for the pyramids. [1] The historian Moritz Cantor first made the conjecture in 1882. [1] Right angles were certainly laid out accurately in Ancient Egypt; [1] their surveyors did use knotted cords for measurement; [1] Plutarch recorded in Isis and Osiris (around 100 AD) that the Egyptians admired the 3-4-5 triangle; [1] and the Berlin Papyrus 6619 from the Middle Kingdom (before 1700 BC) made statements that suggest knowledge of Pythagoras' theorem. [2] [1] The 3-4-5 triangle was used because it is the smallest right-angled triangle with whole-numbered side lengths. However, no Egyptian text before 300 BC actually mentions the use of the theorem to find the length of a triangle's sides. Therefore, the historian of mathematics Roger Cooke published that the Ancient Egyptians probably did know the Pythagorean theorem, but concludes that "there is no evidence that they used it to construct right angles". [1]

See also

Related Research Articles

<span class="mw-page-title-main">History of geometry</span> Historical development of geometry

Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).

<span class="mw-page-title-main">Thales of Miletus</span> Ancient Greek philosopher (c. 624 – c. 545 BC)

Thales of Miletus was an Ancient Greek pre-Socratic philosopher from Miletus in Ionia, Asia Minor. Thales was one of the Seven Sages, founding figures of Ancient Greece.

<span class="mw-page-title-main">Volume</span> Quantity of three-dimensional space

Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units or by various imperial or US customary units. The definition of length and height (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid that the container could hold, rather than the amount of space the container itself displaces. By metonymy, the term "volume" sometimes is used to refer to the corresponding region.

<span class="mw-page-title-main">Triangulation</span> Method of determining a location

In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points.

<span class="mw-page-title-main">Thales's theorem</span> On triangles inscribed in a circle with a diameter as an edge

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Isosceles triangle</span> Triangle with at least two sides congruent

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c. 3000 to c. 300 BCE, from the Old Kingdom of Egypt until roughly the beginning of Hellenistic Egypt. The ancient Egyptians utilized a numeral system for counting and solving written mathematical problems, often involving multiplication and fractions. Evidence for Egyptian mathematics is limited to a scarce amount of surviving sources written on papyrus. From these texts it is known that ancient Egyptians understood concepts of geometry, such as determining the surface area and volume of three-dimensional shapes useful for architectural engineering, and algebra, such as the false position method and quadratic equations.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

The ancient Egyptian units of measurement are those used by the dynasties of ancient Egypt prior to its incorporation in the Roman Empire and general adoption of Roman, Greek, and Byzantine units of measurement. The units of length seem to have originally been anthropic, based on various parts of the human body, although these were standardized using cubit rods, strands of rope, and official measures maintained at some temples.

In ancient Egypt, a rope stretcher was a surveyor who measured real property demarcations and foundations using knotted cords, stretched so the rope did not sag. The practice is depicted in tomb paintings of the Theban Necropolis. Rope stretchers used 3-4-5 triangles and the plummet, which are still in use by modern surveyors.

<span class="mw-page-title-main">Moscow Mathematical Papyrus</span> Ancient Egyptian mathematical manuscript

The Moscow Mathematical Papyrus, also named the Golenishchev Mathematical Papyrus after its first non-Egyptian owner, Egyptologist Vladimir Golenishchev, is an ancient Egyptian mathematical papyrus containing several problems in arithmetic, geometry, and algebra. Golenishchev bought the papyrus in 1892 or 1893 in Thebes. It later entered the collection of the Pushkin State Museum of Fine Arts in Moscow, where it remains today.

<span class="mw-page-title-main">History of trigonometry</span>

Early study of triangles can be traced to the 2nd millennium BC, in Egyptian mathematics and Babylonian mathematics. Trigonometry was also prevalent in Kushite mathematics. Systematic study of trigonometric functions began in Hellenistic mathematics, reaching India as part of Hellenistic astronomy. In Indian astronomy, the study of trigonometric functions flourished in the Gupta period, especially due to Aryabhata, who discovered the sine function, cosine function, and versine function.

<span class="mw-page-title-main">Measuring rod</span> Tool used to physically measure lengths

A measuring rod is a tool used to physically measure lengths and survey areas of various sizes. Most measuring rods are round or square sectioned; however, they can also be flat boards. Some have markings at regular intervals. It is likely that the measuring rod was used before the line, chain or steel tapes used in modern measurement.

The Story of 1 is a BBC documentary about the history of numbers, and in particular, the number 1. It was presented by former Monty Python member Terry Jones. It was released in 2005.

<i>Haidao Suanjing</i>

Haidao Suanjing was written by the Chinese mathematician Liu Hui of the Three Kingdoms era (220–280) as an extension of chapter 9 of The Nine Chapters on the Mathematical Art. During the Tang dynasty, this appendix was taken out from The Nine Chapters on the Mathematical Art as a separate book, titled Haidao suanjing (Sea Island Mathematical Manual), named after problem No 1 "Looking at a sea island." In the time of the early Tang dynasty, Haidao Suanjing was selected into one of The Ten Computational Canons as the official mathematical texts for imperial examinations in mathematics.

<span class="mw-page-title-main">Timeline of ancient Greek mathematicians</span>

This is a timeline of mathematicians in ancient Greece.

<span class="mw-page-title-main">Seked</span> Ancient Egyptian unit of measurement

Seked is an ancient Egyptian term describing the inclination of the triangular faces of a right pyramid. The system was based on the Egyptians' length measure known as the royal cubit. It was subdivided into seven palms, each of which was sub-divided into four digits.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Egyptian geometry</span> Geometry emanating from Egypt

Egyptian geometry refers to geometry as it was developed and used in Ancient Egypt. Their geometry was a necessary outgrowth of surveying to preserve the layout and ownership of farmland, which was flooded annually by the Nile river.

References

  1. 1 2 3 4 5 6 7 Cooke, Roger L. (2011). The History of Mathematics: A Brief Course (2nd ed.). John Wiley & Sons. pp. 237–238. ISBN   978-1-118-03024-0.
  2. Gillings, Richard J. (1982). Mathematics in the Time of the Pharaohs . Dover. p.  161.