Korn's inequality

Last updated

In mathematical analysis, Korn's inequality is an inequality concerning the gradient of a vector field that generalizes the following classical theorem: if the gradient of a vector field is skew-symmetric at every point, then the gradient must be equal to a constant skew-symmetric matrix. Korn's theorem is a quantitative version of this statement, which intuitively says that if the gradient of a vector field is on average not far from the space of skew-symmetric matrices, then the gradient must not be far from a particular skew-symmetric matrix. The statement that Korn's inequality generalizes thus arises as a special case of rigidity.

Contents

In (linear) elasticity theory, the symmetric part of the gradient is a measure of the strain that an elastic body experiences when it is deformed by a given vector-valued function. The inequality is therefore an important tool as an a priori estimate in linear elasticity theory.

Statement of the inequality

Let Ω be an open, connected domain in n-dimensional Euclidean space Rn, n  2. Let H1(Ω) be the Sobolev space of all vector fields v = (v1, ..., vn) on Ω that, along with their (first) weak derivatives, lie in the Lebesgue space L2(Ω). Denoting the partial derivative with respect to the ith component by i, the norm in H1(Ω) is given by

Then there is a constant C  0, known as the Korn constant of Ω, such that, for all v  H1(Ω),

 

 

 

 

(1)

where e denotes the symmetrized gradient given by

Inequality (1) is known as Korn's inequality.

See also

Related Research Articles

In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

In mathematics, a symplectic vector space is a vector space V over a field F equipped with a symplectic bilinear form.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection.

In mathematics, a variational inequality is an inequality involving a functional, which has to be solved for all possible values of a given variable, belonging usually to a convex set. The mathematical theory of variational inequalities was initially developed to deal with equilibrium problems, precisely the Signorini problem: in that model problem, the functional involved was obtained as the first variation of the involved potential energy. Therefore, it has a variational origin, recalled by the name of the general abstract problem. The applicability of the theory has since been expanded to include problems from economics, finance, optimization and game theory.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

<span class="mw-page-title-main">Olga Oleinik</span> Russian mathematician

Olga Arsenievna Oleinik HFRSE was a Soviet mathematician who conducted pioneering work on the theory of partial differential equations, the theory of strongly inhomogeneous elastic media, and the mathematical theory of boundary layers. She was a student of Ivan Petrovsky. She studied and worked at the Moscow State University.

Weak formulations are important tools for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, equations or conditions are no longer required to hold absolutely and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled.

<span class="mw-page-title-main">Ivan Petrovsky</span> Soviet mathematician (1901–1973)

Ivan Georgievich Petrovsky was a Soviet mathematician working mainly in the field of partial differential equations. He greatly contributed to the solution of Hilbert's 19th and 16th problems, and discovered what are now called Petrovsky lacunas. He also worked on the theories of boundary value problems, probability, and on the topology of algebraic curves and surfaces.

In mathematics, a Hamiltonian matrix is a 2n-by-2n matrix A such that JA is symmetric, where J is the skew-symmetric matrix

In mathematics, a Caccioppoli set is a set whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation.

In linear algebra, skew-Hamiltonian matrices are special matrices which correspond to skew-symmetric bilinear forms on a symplectic vector space.

<span class="mw-page-title-main">Gaetano Fichera</span> Italian mathematician

Gaetano Fichera was an Italian mathematician, working in mathematical analysis, linear elasticity, partial differential equations and several complex variables. He was born in Acireale, and died in Rome.

The Signorini problem is an elastostatics problem in linear elasticity: it consists in finding the elastic equilibrium configuration of an anisotropic non-homogeneous elastic body, resting on a rigid frictionless surface and subject only to its mass forces. The name was coined by Gaetano Fichera to honour his teacher, Antonio Signorini: the original name coined by him is problem with ambiguous boundary conditions.

<span class="mw-page-title-main">Solomon Mikhlin</span> Soviet mathematician

Solomon Grigor'evich Mikhlin was a Soviet mathematician of who worked in the fields of linear elasticity, singular integrals and numerical analysis: he is best known for the introduction of the symbol of a singular integral operator, which eventually led to the foundation and development of the theory of pseudodifferential operators.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.

In mathematics, the Hopf lemma, named after Eberhard Hopf, states that if a continuous real-valued function in a domain in Euclidean space with sufficiently smooth boundary is harmonic in the interior and the value of the function at a point on the boundary is greater than the values at nearby points inside the domain, then the derivative of the function in the direction of the outward pointing normal is strictly positive. The lemma is an important tool in the proof of the maximum principle and in the theory of partial differential equations. The Hopf lemma has been generalized to describe the behavior of the solution to an elliptic problem as it approaches a point on the boundary where its maximum is attained.

<span class="mw-page-title-main">Gradient discretisation method</span>

In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes.

References