Kramers' theorem

Last updated

In quantum mechanics, the Kramers' degeneracy theorem states that for every energy eigenstate of a time-reversal symmetric system with half-integer total spin, there is another eigenstate with the same energy related by time-reversal. In other words, the degeneracy of every energy level is an even number if it has half-integer spin. The theorem is named after Dutch physicist H. A. Kramers.

Contents

In theoretical physics, the time reversal symmetry is the symmetry of physical laws under a time reversal transformation:

If the Hamiltonian operator commutes with the time-reversal operator, that is

then, for every energy eigenstate , the time reversed state is also an eigenstate with the same energy. These two states are sometimes called a Kramers pair. [1] In general, this time-reversed state may be identical to the original one, but that is not possible in a half-integer spin system: since time reversal reverses all angular momenta, reversing a half-integer spin cannot yield the same state (the magnetic quantum number is never zero).

Mathematical statement and proof

In quantum mechanics, the time reversal operation is represented by an antiunitary operator acting on a Hilbert space . If it happens that , then we have the following simple theorem:

If is an antiunitary operator acting on a Hilbert space satisfying and a vector in , then is orthogonal to .

Proof

By the definition of an antiunitary operator, , where and are vectors in . Replacing and and using that , we get which implies that .

Consequently, if a Hamiltonian is time-reversal symmetric, i.e. it commutes with , then all its energy eigenspaces have even degeneracy, since applying to an arbitrary energy eigenstate gives another energy eigenstate that is orthogonal to the first one. The orthogonality property is crucial, as it means that the two eigenstates and represent different physical states. If, on the contrary, they were the same physical state, then for an angle , which would imply

To complete Kramers degeneracy theorem, we just need to prove that the time-reversal operator acting on a half-odd-integer spin Hilbert space satisfies . This follows from the fact that the spin operator represents a type of angular momentum, and, as such, should reverse direction under :

Concretely, an operator that has this property is usually written as

where is the spin operator in the direction and is the complex conjugation map in the spin basis. [2]

Since has real matrix components in the basis, then

Hence, for half-odd-integer spins , we have . This is the same minus sign that appears when one does a full rotation on systems with half-odd-integer spins, such as fermions.

Consequences

The energy levels of a system with an odd total number of fermions (such as electrons, protons and neutrons) remain at least doubly degenerate in the presence of purely electric fields (i.e. no external magnetic fields). It was first discovered in 1930 by H. A. Kramers [3] as a consequence of the Breit equation. As shown by Eugene Wigner in 1932, [4] it is a consequence of the time reversal invariance of electric fields, and follows from an application of the antiunitary T-operator to the wavefunction of an odd number of fermions. The theorem is valid for any configuration of static or time-varying electric fields.

For example, the hydrogen (H) atom contains one proton and one electron, so that the Kramers theorem does not apply. Indeed, the lowest (hyperfine) energy level of H is nondegenerate, although a generic system might have degeneracy for other reasons. The deuterium (D) isotope on the other hand contains an extra neutron, so that the total number of fermions is three, and the theorem does apply. The ground state of D contains two hyperfine components, which are twofold and fourfold degenerate.

See also

Related Research Articles

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation.

In quantum field theory, the theta vacuum is the semi-classical vacuum state of non-abelian Yang–Mills theories specified by the vacuum angleθ that arises when the state is written as a superposition of an infinite set of topologically distinct vacuum states. The dynamical effects of the vacuum are captured in the Lagrangian formalism through the presence of a θ-term which in quantum chromodynamics leads to the fine tuning problem known as the strong CP problem. It was discovered in 1976 by Curtis Callan, Roger Dashen, and David Gross, and independently by Roman Jackiw and Claudio Rebbi.

<span class="mw-page-title-main">Degenerate energy levels</span> Energy level of a quantum system that corresponds to two or more different measurable states

In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.

In mathematics, an antiunitary transformation is a bijective antilinear map

In quantum mechanics, the energies of cyclotron orbits of charged particles in a uniform magnetic field are quantized to discrete values, thus known as Landau levels. These levels are degenerate, with the number of electrons per level directly proportional to the strength of the applied magnetic field. It is named after the Soviet physicist Lev Landau.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

<span class="mw-page-title-main">Helium atom</span> Atom of helium

A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom. Historically, the first such helium spectrum calculation was done by Albrecht Unsöld in 1927. Its success was considered to be one of the earliest signs of validity of Schrödinger's wave mechanics.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

References

  1. Zhang, Fan; Kane, C. L.; Mele, E. J. (2013-08-02). "Time-Reversal-Invariant Topological Superconductivity and Majorana Kramers Pairs". Physical Review Letters. 111 (5): 056402. arXiv: 1212.4232 . Bibcode:2013PhRvL.111e6402Z. doi:10.1103/PhysRevLett.111.056402. PMID   23952423. S2CID   31559089.
  2. Tasaki, Hal (2020). "2.3: Time-Reversal and Kramers Degeneracy". Physics and mathematics of quantum many-body systems. Cham: Springer. ISBN   978-3-030-41265-4. OCLC   1154567924.
  3. Kramers, H. A. (1930). "Théorie générale de la rotation paramagnétique dans les cristaux" (PDF). Proceedings of the Royal Netherlands Academy of Arts and Sciences (in French). 33 (6–10): 959–972.
  4. E. Wigner, Über die Operation der Zeitumkehr in der Quantenmechanik, Nachr. Akad. Ges. Wiss. Göttingen 31, 546–559 (1932) http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN002509032