Lacunary function

Last updated
Domain coloring of the 128th partial sum of the lacunary function
[?]
n
=
0
[?]
z
2
n
{\displaystyle \sum _{n=0}^{\infty }z^{2^{n}}}
. Lacunary domain coloring.png
Domain coloring of the 128th partial sum of the lacunary function .

In analysis, a lacunary function, also known as a lacunary series, is an analytic function that cannot be analytically continued anywhere outside the radius of convergence within which it is defined by a power series. The word lacunary is derived from lacuna (pl. lacunae), meaning gap, or vacancy.

Contents

The first known examples of lacunary functions involved Taylor series with large gaps, or lacunae, between the non-zero coefficients of their expansions. More recent investigations have also focused attention on Fourier series with similar gaps between non-zero coefficients. There is a slight ambiguity in the modern usage of the term lacunary series, which may refer to either Taylor series or Fourier series.

A simple example

Pick an integer . Consider the following function defined by a simple power series:

The power series converges locally uniform on any open domain |z| < 1. This can be proved by comparing f with the geometric series, which is absolutely convergent when |z| < 1. So f is analytic on the open unit disk. Nevertheless, f has a singularity at every point on the unit circle, and cannot be analytically continued outside of the open unit disk, as the following argument demonstrates.

Clearly f has a singularity at z = 1, because

is a divergent series. But if z is allowed to be non-real, problems arise, since

we can see that f has a singularity at a point z when za = 1, and also when za2 = 1. By the induction suggested by the above equations, f must have a singularity at each of the an-th roots of unity for all natural numbers n. The set of all such points is dense on the unit circle, hence by continuous extension every point on the unit circle must be a singularity of f. [1]

An elementary result

Evidently the argument advanced in the simple example shows that certain series can be constructed to define lacunary functions. What is not so evident is that the gaps between the powers of z can expand much more slowly, and the resulting series will still define a lacunary function. To make this notion more precise some additional notation is needed.

We write

where bn = ak when n = λk, and bn = 0 otherwise. The stretches where the coefficients bn in the second series are all zero are the lacunae in the coefficients. The monotonically increasing sequence of positive natural numbers {λk} specifies the powers of z which are in the power series for f(z).

Now a theorem of Hadamard can be stated. [2] If

for all k, where δ > 0 is an arbitrary positive constant, then f(z) is a lacunary function that cannot be continued outside its circle of convergence. In other words, the sequence {λk} doesn't have to grow as fast as 2k for f(z) to be a lacunary function it just has to grow as fast as some geometric progression (1 + δ)k. A series for which λk grows this quickly is said to contain Hadamard gaps. See Ostrowski–Hadamard gap theorem.

Lacunary trigonometric series

Mathematicians have also investigated the properties of lacunary trigonometric series

for which the λk are far apart. Here the coefficients ak are real numbers. In this context, attention has been focused on criteria sufficient to guarantee convergence of the trigonometric series almost everywhere (that is, for almost every value of the angle θ and of the distortion factor ω).

converges (diverges).

A unified view

Greater insight into the underlying question that motivates the investigation of lacunary power series and lacunary trigonometric series can be gained by re-examining the simple example above. In that example we used the geometric series

and the Weierstrass M-test to demonstrate that the simple example defines an analytic function on the open unit disk.

The geometric series itself defines an analytic function that converges everywhere on the closed unit disk except when z = 1, where g(z) has a simple pole. [4] And, since z = eiθ for points on the unit circle, the geometric series becomes

at a particular z, |z| = 1. From this perspective, then, mathematicians who investigate lacunary series are asking the question: How much does the geometric series have to be distorted by chopping big sections out, and by introducing coefficients ak  1 before the resulting mathematical object is transformed from a nice smooth meromorphic function into something that exhibits a primitive form of chaotic behavior?

See also

Notes

  1. (Whittaker and Watson, 1927, p. 98) This example apparently originated with Weierstrass.
  2. (Mandelbrojt and Miles, 1927)
  3. (Fukuyama and Takahashi, 1999)
  4. This can be shown by applying Abel's test to the geometric series g(z). It can also be understood directly, by recognizing that the geometric series is the Maclaurin series for g(z) = z/(1z).

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Laplace's equation</span> Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

In mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or . When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function, the radius of convergence is the shortest or minimum of all the respective distances calculated from the center of the disk of convergence to the respective singularities of the function.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Legendre polynomials</span> System of complete and orthogonal polynomials

In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies:

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

In mathematics, the Ostrowski–Hadamard gap theorem is a result about the analytic continuation of complex power series whose non-zero terms are of orders that have a suitable "gap" between them. Such a power series is "badly behaved" in the sense that it cannot be extended to be an analytic function anywhere on the boundary of its disc of convergence. The result is named after the mathematicians Alexander Ostrowski and Jacques Hadamard.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In number theory, the Shimura correspondence is a correspondence between modular forms F of half integral weight k+1/2, and modular forms f of even weight 2k, discovered by Goro Shimura (1973). It has the property that the eigenvalue of a Hecke operator Tn2 on F is equal to the eigenvalue of Tn on f.

In mathematics, a function defined on a region of the complex plane is said to be of bounded type if it is equal to the ratio of two analytic functions bounded in that region. But more generally, a function is of bounded type in a region if and only if is analytic on and has a harmonic majorant on where . Being the ratio of two bounded analytic functions is a sufficient condition for a function to be of bounded type, and if is simply connected the condition is also necessary.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In mathematics, a positive harmonic function on the unit disc in the complex numbers is characterized as the Poisson integral of a finite positive measure on the circle. This result, the Herglotz-Riesz representation theorem, was proved independently by Gustav Herglotz and Frigyes Riesz in 1911. It can be used to give a related formula and characterization for any holomorphic function on the unit disc with positive real part. Such functions had already been characterized in 1907 by Constantin Carathéodory in terms of the positive definiteness of their Taylor coefficients.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.

Wiener–Lévy theorem is a theorem in Fourier analysis, which states that a function of an absolutely convergent Fourier series has an absolutely convergent Fourier series under some conditions. The theorem was named after Norbert Wiener and Paul Lévy.

The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas.

References