Lake Lisan

Last updated
Outline of Lake Lisan Lisan.svg
Outline of Lake Lisan

Lake Lisan was a prehistoric lake that existed between 70,000 and 12,000 BP in the Jordan Rift Valley in the Near East. [1] It is sometimes referred to as a Pleistocene lake.

Contents

Lisan means tongue in Arabic relating to the shape of the Lisan Peninsula where studies of the sediment formations were taken. The sediment formations left by the lake extend from Lake Tiberias (the Sea of Galilee) in the north to a boundary ridge ca. 35 km south of the Dead Sea. The lake left behind a layer of lacustrine sediment that blankets the Jordan Valley with terraces of sediment up to 40 m thick. These sediments are commonly called marls and are composed of layers of true loam and calcareous silt loams mixed with other chemicals and salts. [2] At its height, the lake covered several other basins in the area with a maximum area of ca. 2000 km2, a length of 200 km and a width of no more than 17 km. [3] [4] [5]

The formations were named the Lisan deposits and first described by Lartet in 1869 after visiting the Dead Sea in the Spring of 1864. He noted a correlation of a wet period in the Levant with a glacial period in Europe. It was not until geographer E. Huntindon visited in 1909 that it was realized it was measure of historical precipitation for the area. The first stratigraphic study of the sediments was carried out by Picard in 1943 who developed a chronology he called the Lisan series. It was not until later studies were carried out at lake level that a more detailed chronology of the lacustrine record was developed. [6]

These studies determined the highest stand of the lake to be around 160 metres below sea level at around 24,000 to 26,000 BC. when it formed a complete lake all the way along the Jordan Valley, approximately 200 metres higher than the current level of the Dead Sea. [5] This started to decline around 17,000 BC with the sharpest drop in level occurring through 14,000 to 13,000 BC to around 500 metres below sea level, representing possibly the largest lake level drop in the last 70,000 years, occurring over a period of only around 1000 years. This rapid lowering created a flattened valley floor, known in modern times as the Ghor. Tectonic factors have been suggested as a possible cause for these events and it has been argued that the level receded as far as 700 metres below sea level, then gradually refilled. [7]

Climatic and tectonic changes caused the level in the Jordan Valley to fluctuate into the Holocene, leaving Lake Beisan in the basin around Beit She'an still extant into the Bronze Age. Archaeological evidence also supports these levels with no Kebaran sites located between 17,000 BC and 13,500 BC below a level of 203 metres below sea level. Early Natufian sites are also located between 215 and 230 metres below sea level, indicating a high level and receding shoreline after this date. [2]

Pictures

Related Research Articles

<span class="mw-page-title-main">Dead Sea</span> Salt lake bordering Palestine, Jordan and Israel

The Dead Sea, also known by other names, is a landlocked salt lake bordered by Jordan to the east and the Israeli-occupied West Bank and Israel to the west. It lies in the Jordan Rift Valley, and its main tributary is the Jordan River.

<span class="mw-page-title-main">Evaporite</span> Water-soluble mineral deposit formed by evaporation from an aqueous solution

An evaporite is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocean deposits, and non-marine, which are found in standing bodies of water such as lakes. Evaporites are considered sedimentary rocks and are formed by chemical sediments.

<span class="mw-page-title-main">Messinian salinity crisis</span> Drying-up of the Mediterranean Sea from 5.96 to 5.33 million years ago

The Messinian salinity crisis was a geological event during which the Mediterranean Sea went into a cycle of partial or nearly complete desiccation (drying-up) throughout the latter part of the Messinian age of the Miocene epoch, from 5.96 to 5.33 Ma. It ended with the Zanclean flood, when the Atlantic reclaimed the basin.

<span class="mw-page-title-main">Geology of the Falkland Islands</span>

The geology of the Falkland Islands is described in several publications. The Falkland Islands are located on a projection of the Patagonian continental shelf. In ancient geological time this shelf was part of Gondwana, which around 400 million years ago broke from what is now Africa and drifted westwards relative to Africa. Studies of the seabed surrounding the islands indicated the possibility of oil. Intensive exploration began in 1996, although there had been some earlier seismic surveys in the region.

<span class="mw-page-title-main">Terrace (geology)</span> A step-like landform

In geology, a terrace is a step-like landform. A terrace consists of a flat or gently sloping geomorphic surface, called a tread, that is typically bounded on one side by a steeper ascending slope, which is called a "riser" or "scarp". The tread and the steeper descending slope together constitute the terrace. Terraces can also consist of a tread bounded on all sides by a descending riser or scarp. A narrow terrace is often called a bench.

<span class="mw-page-title-main">Lacustrine plain</span> Lakes filled by sediment

A lacustrine plain or lake plain is a plain formed due to the past existence of a lake and its accompanying sediment accumulation. Lacustrine plains can be formed through one of three major mechanisms: glacial drainage, differential uplift, and inland lake creation and drainage. Lake plains can have various uses depending on where and how they form.

<span class="mw-page-title-main">Geology of Saskatchewan</span> Geologic features of the Canadian province

The geology of Saskatchewan can be divided into two main geological regions, the Precambrian Canadian Shield and the Phanerozoic Western Canadian Sedimentary Basin. Within the Precambrian shield exists the Athabasca sedimentary basin. Meteorite impacts have altered the natural geological formation processes. The prairies were most recently affected by glacial events in the Quaternary period.

<span class="mw-page-title-main">Paradox Formation</span>

In geology, the Paradox Formation Is a Pennsylvanian age formation which consists of abundant evaporites with lesser interbedded shale, sandstone, and limestone. The evaporites are largely composed of gypsum, anhydrite, and halite. The formation is found mostly in the subsurface, but there are scattered exposures in anticlines in eastern Utah and western Colorado. These surface exposures occur in the Black Mesa, San Juan and Paradox Basins and the formation is found in the subsurface in southwestern Colorado, southeastern Utah, northeastern Arizona and northeastern New Mexico.

Lake Beisan was a prehistoric lake that existed from ca. 12,000 to 5,000 BC in the north of the Jordan Valley in the Near East near modern-day Beit She'an.

The Epoch of Extreme Inundations (EEI) is a hypothetical epoch during which four landforms in the Pontic–Caspian steppe—marine lowlands, river valleys, marine transgressions and slopes —were widely inundated. Catastrophic events during the epoch are theorized to have influenced prehistoric human life.

<span class="mw-page-title-main">Arauco Basin</span>

The Arauco Basin is a sediment-filled depression –a sedimentary basin– in south-central Chile. In the context of plate tectonics it is classified as a forearc basin. The basin has an approximate area of 8,000 square kilometres (3,100 sq mi) and at its deeper parts the surface of its sedimentary fill reaches 200 metres (660 ft) below sea-level. The basin is interpreted as being part of an uplifted part of the continental shelf. To the west it bounds an active accretionary prism that lies next to the Chile trench and to the east it bounds metamorphic basement representing a fossil Paleozoic accretionary complex that has been intruded by the Coastal Batholith of central Chile.

<span class="mw-page-title-main">Lake Cahuilla</span> Prehistoric lake in the Salton Sea basin of California

Lake Cahuilla was a prehistoric lake in California and northern Mexico. Located in the Coachella and Imperial valleys, it covered surface areas of 5,700 km2 (2,200 sq mi) to a height of 12 m (39 ft) above sea level during the Holocene. During earlier stages of the Pleistocene, the lake reached even higher elevations, up to 31–

<span class="mw-page-title-main">Lake Manly</span> Lake in Death Valley, California, United States

Lake Manly was a pluvial lake in Death Valley, California, covering much of Death Valley with a surface area of 1,600 square kilometres (620 sq mi) during the so-called "Blackwelder stand". Water levels varied through its history, and the chronology is further complicated by active tectonic processes that have modified the elevations of the various shorelines of Lake Manly; during the Blackwelder stage they reached 47–90 metres (154–295 ft) above sea level. The lake received water mainly from the Amargosa River and at various points from the Mojave River and Owens River. The lake and its substantial catchment favoured the spread of a number of aquatic species, including some lizards, pupfish and springsnails. The lake probably supported a substantial ecosystem, and a number of diatoms developed there.

<span class="mw-page-title-main">Sabana Formation</span> Geological formation in the Colombian Andes

The Sabana Formation is a geological formation of the Bogotá savanna, Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation consists mainly of shales with at the edges of the Bogotá savanna lignites and sandstones. The Sabana Formation dates to the Quaternary period; Middle to Late Pleistocene epoch, and has a maximum thickness of 320 metres (1,050 ft), varying greatly across the savanna. It is the uppermost formation of the lacustrine and fluvio-glacial sediments of paleolake Humboldt, that existed at the edge of the Eastern Hills until the latest Pleistocene.

<span class="mw-page-title-main">Geology of Lebanon</span>

The geology of Lebanon remains poorly studied prior to the Jurassic. The country is heavily dominated by limestone, sandstone, other sedimentary rocks, and basalt, defined by its tectonic history. In Lebanon, 70% of exposed rocks are limestone karst.

The geology of Malawi formed on extremely ancient crystalline basement rock, which was metamorphosed and intruded by igneous rocks during several orogeny mountain building events in the past one billion years. The rocks of the Karoo Supergroup and newer sedimentary units deposited across much of Malawi in the last 251 million years, in connection with a large rift basin on the supercontinent Gondwana and the more recent rifting that has created the East African Rift, which holds Lake Malawi. The country has extensive mineral reserves, many of them poorly understood or not exploited, including coal, vermiculite, rare earth elements and bauxite.

<span class="mw-page-title-main">Lake Panamint</span>

Lake Panamint is a former lake that occupied Panamint Valley in California during the Pleistocene. It was formed mainly by water overflowing through the Owens River and which passed through Lake Searles into the Panamint Valley. At times, Lake Panamint itself overflowed into Death Valley and Lake Manly.

The geology of Jordan includes thick sedimentary sequences of sandstone, marl and evaporites atop ancient Precambrian crystalline igneous and metamorphic basement rock.

<span class="mw-page-title-main">Geology of Italy</span> Overview of the geology of Italy

The geology of Italy includes mountain ranges such as the Alps and the Apennines formed from the uplift of igneous and primarily marine sedimentary rocks all formed since the Paleozoic. Some active volcanoes are located in Insular Italy.

<span class="mw-page-title-main">Lake San Agustín</span> Former lake in New Mexico, United States

Lake San Agustín is a former lake in New Mexico, which developed as a pluvial lake in the Plains of San Agustín during Pleistocene glacial periods. During its highstands it covered an area of 1,200 square kilometres (460 sq mi) with a maximum depth of 70 metres (230 ft), and split into several separate lakes while drying out. The lake last appeared during the last glacial maximum (LGM) and dried out at the beginning of the Holocene, with the last remnant disappearing about 5,000 years ago.

References

  1. Kaufman, A. (1971). "U-series dating of Dead Sea basin carbonates". Geochim. Cosmochim. Acta. 35: 1269–1281. doi:10.1016/0016-7037(71)90115-3.
  2. 1 2 Eva Kaptijn (2009). Life on the Watershed. Reconstructing Subsistence in a Steppe Region Using Archaeological Survey: A Diachronic Perspective on Habitation in the Jordan Valley. Sidestone Press. pp. 15–. ISBN   978-90-8890-029-7 . Retrieved 12 April 2011.
  3. John K. Warren (23 February 2006). Evaporites: sediments, resources and hydrocarbons. Birkhäuser. pp. 277–. ISBN   978-3-540-26011-0 . Retrieved 12 April 2011.
  4. Albina Colella; David B. Prior (1990). Coarse-grained deltas. John Wiley and Sons. pp. 274–. ISBN   978-0-632-02894-8 . Retrieved 12 April 2011.
  5. 1 2 Moore, A.M.T. (1978). The Neolithic of the Levant. Oxford University, Unpublished Ph.D. Thesis. pp. 425–427.
  6. Geological Society of America (30 May 2006). New frontiers in Dead Sea paleoenvironmental research. Geological Society of America. pp. 164–. ISBN   978-0-8137-2401-0 . Retrieved 12 April 2011.
  7. David Neev; Kenneth Orris Emery (1967). The Dead Sea: depositional processes and environments of evaporites. Ministry of Development Geological Survey of Israël. Retrieved 12 April 2011.