Laser Ranging Retroreflector

Last updated

Laser Ranging Retroreflector
Apollo 11 Lunar Laser Ranging Experiment.jpg
The Apollo 11 Laser Ranging Retroreflector experiment on the Moon
Mission durationApollo 11:
54 years, 9 months, 20 days
Apollo 14:
53 years, 3 months, 11 days
Apollo 15:
52 years, 9 months, 11 days
(in progress)
Spacecraft properties
Manufacturer Arthur D. Little Inc
PerkinElmer
 

The Laser Ranging Retroreflector (LRRR) is the first ever deployable lunar laser ranging experiment. It was carried on Apollo 11 as part of the Early Apollo Scientific Experiments Package, and on Apollo 14 and Apollo 15 as part of the Apollo Lunar Surface Experiments Package (ALSEP). The LRRR consists of a series of corner reflectors set within a panel. Laser beams sent from Earth are bounced off the retroreflector and the timing of the return signal can be used to measure the distance from the signal source to the reflector. The reflector was conceived by James E. Faller in 1961. The experiment's principal investigator was initially Carroll Alley of the University of Maryland who was eventually succeeded by Faller.

Contents

Background

The motivation for a retroreflector came from a desire for a greater experimental basis for general relativity and specifically problems that arose with the Brans–Dicke theory of gravitation. [1] A research group at Princeton University had been exploring the possibility of testing the gravitational constant by using corner reflectors carried on artificial satellites. At this time lasers had not been developed, and this approach would have required the use of flashtubes. [2] With the development of the first functioning laser in 1960 at Bell Labs, this experiment was no longer restricted to being carried on artificial satellites, but the Moon, Earth's natural satellite, could also be used. [3]

The concept of using a corner reflector on the Moon came in 1961 from James E. Faller, who was a post-graduate doctoral candidate at the time. Conceived with NASA's Surveyor landing program in mind, his idea consisted of a corner reflector mounted within a rubber ball that could be dropped from a robotic lander; upon landing, the ball assembly would self-right and point the reflector upwards. Faller documented these ideas in a note titled "A Proposed Lunar Package (A Corner Reflector on the Moon)", but because he needed to complete his thesis, further development of the concept did not occur immediately. [3]

There were attempts in 1962 at precision ranging of the Moon using lasers without retroreflectors, most notably an attempt in 1962 by Louis Smullin and Giorgio Fiocco from the Massachusetts Institute of Technology. The Moon's surface can scatter a laser beam and produce a sufficiently strong enough signal to be detected on Earth, resulting in ranging measurements that were accurate to within 120 meters (390 ft). Beyond this though the effects of terrain became problematic, and when combined with a returned signal strength that is both weak and temporally dispersed, surface scattering was not sufficient for the purpose of precision ranging. [4]

After an assembly of Princeton staff and alumni at a Physical Society meeting in 1964, it was decided that an experiment based on this concept should be proposed to NASA. Plans for the experiment were laid out in a paper that was published in 1965 and the proposal to NASA was submitted later that year. [5] This was led by Carroll Alley, a professor at the University of Maryland whose proximity to NASA's headquarters made him suited to taking on the role of the experiment's principal investigator. At the same time the Lunar Ranging Experiment (LURE) advisory committee was formed whose notable members included Robert H. Dicke, James E. Faller, David Todd Wilkinson, William M. Kaula, and Gordon J. F. MacDonald. [6]

Instrument

Diagram of the Laser Ranging Retroreflector Laser Ranging Retroreflector.gif
Diagram of the Laser Ranging Retroreflector

The experiment needed to be built to survive the challenging environmental conditions found on the surface of the Moon. This includes large temperature variations, cosmic and solar radiation, and lunar dust kicked up by both the arrival and departure of the Apollo Lunar Module. [4] Faller identified that an array of small-diameter retroreflector cubes would perform better thermally than one or more larger cubes of the same mass. This thermal performance was important because fused silica, the likely material for the reflectors, optically distorts with inputs of heat from solar energy. [3] There was a strong desire for the experiment to be able to operate during the lunar day to avoid the loss of data collection opportunities during the daylight half of each lunar month. [5]

The Apollo 11 and 14 instruments consisted of 100 solid fused-silica corner reflectors set within a 45 cm (18 in) square panel. [6] The corner reflectors were produced by PerkinElmer and Boxton-Beel Inc. Design and fabrication of the array package was completed by Arthur D. Little Inc. [6] Each reflector is 3.8 cm (1.5 in) in diameter sitting 1.9 cm (0.75 in) below the panel's top surface and mounted between Teflon rings for greater thermal protection. [5] The panel could be set at a slight incline so that the panel could present a more optimized cross-sectional area. [5] The reflector enables the return of 10 to 100 times more powerful signal when compared with reflecting off the lunar surface. [5] The expected life of the experiment was in excess of 10 years. [6]

Missions

Apollo 11

The Apollo 11 LRRR was deployed on the lunar surface by the Apollo 11 astronaut, Buzz Aldrin, on July 21, 1969. The package was deployed approximately 60 feet (18 m) from Lunar Module Eagle. [5] Aldrin initially aligned the face of the array in an approximate fashion so that it faced the Earth, with more precise alignment provided by a sundial. [1] Deployment of the instrument took around 5 minutes to complete. [1]

Detection of return signals from the lunar surface was done by teams from the University of California, Wesleyan University and Goddard Space Flight Center at the Lick Observatory; and from the University of Texas, University of Mary and Goddard at the McDonald Observatory. The Lick Observatory's 3-meter (9.8 ft) telescope was used for the initial signal detection period immediately after the landing of Apollo 11. The McDonald Observatory's 2.7-meter (8 ft 10 in) telescope was used as part of a long-term observation program over a number of years. [5]

Each site used its own Q-switched ruby laser to provide laser pulses, tens of nanoseconds in length and with energies of approximately 7 joules per pulse. Each telescope was used to reduce the divergence of the laser beam to only 2 arc seconds. [5] This resulted in the laser pulses reaching the Moon with a diameter of 1 mi (1.6 km) rather than a diameter of 300 mi (480 km). [6] The returned signal diameter after a complete trip from the Earth to the Moon was 10 mi (16 km) wide resulting in only 1.6 detectable photoelectrons per laser shot by the telescope. [6]

To avoid risks to the operators of the telescope, an electronic viewing system was used to mitigate the risks posed by backscattered laser light to the human eye. [1] This brought additional benefits such as to increase the perceived contrast which enable the identification of features during local daytime on Earth. [1] Concerns about possible disruption to aircraft arriving at nearby San Francisco Bay Area airports resulted in the Federal Aviation Administration diverting aircraft. [1]

As soon as the instrument was deployed, attempts were made to detect returned signals with no success due to limited observation time and uncertainty in deriving the experiment package's precise location. [5] Strong return signals would not be detected until August 1 by the team at the Lick Observatory achieving a measurement with an accuracy of approximately 7 meters (23 ft) during the first observation. [5] The detection aided other observatories by reducing the uncertainty of the instrument's location. [6] The panel eventually enabled a measurement accuracy of approximately 15 cm (5.9 in). [1] The scientists operating the Lick telescope were puzzled by a persistent drift in the measured signal times versus those that were predicted. [1] The explanation was that the Lick telescope's recorded location on Earth was incorrect by approximately 25 meters (82 ft). [1] Additional detections were made by the McDonald Observatory, Pic du Midi Observatory, the Air Force Cambridge Research Laboratories Lunar Ranging Observatory and the Tokyo Astronomical Observatory. [7]

Related Research Articles

<span class="mw-page-title-main">Corner reflector</span> Retroreflector with three orthogonal, intersecting flat surfaces

A corner reflector is a retroreflector consisting of three mutually perpendicular, intersecting flat surfaces, which reflects waves directly towards the source, but translated. The three intersecting surfaces often have square shapes. Radar corner reflectors made of metal are used to reflect radio waves from radar sets. Optical corner reflectors, called corner cubes or cube corners, made of three-sided glass prisms, are used in surveying and laser ranging.

<span class="mw-page-title-main">Lunokhod programme</span> Soviet Moon rover program

Lunokhod was a series of Soviet robotic lunar rovers designed to land on the Moon between 1969 and 1977. Lunokhod 1 was the first roving remote-controlled robot to land on an extraterrestrial body.

<i>Lunokhod 1</i> Soviet lunar rover; first rover to operate on the Moon)

Lunokhod 1, also known as Аппарат 8ЕЛ № 203 was the first robotic rover on the Moon and the first to freely move across the surface of an astronomical object beyond the Earth. Sent by the Soviet Union it was part of the robotic rovers Lunokhod program. The Luna 17 spacecraft carried Lunokhod 1 to the Moon in 1970. Lunokhod 0 (No.201), the previous and first attempt to land a rover, launched in February 1969 but failed to reach Earth orbit.

<span class="mw-page-title-main">Retroreflector</span> Device to reflect radiation back to its source

A retroreflector is a device or surface that reflects radiation back to its source with minimum scattering. This works at a wide range of angle of incidence, unlike a planar mirror, which does this only if the mirror is exactly perpendicular to the wave front, having a zero angle of incidence. Being directed, the retroflector's reflection is brighter than that of a diffuse reflector. Corner reflectors and cat's eye reflectors are the most used kinds.

<span class="mw-page-title-main">Surveyor 7</span> American lunar lander

Surveyor 7 was sent to the Moon in 1968 on a scientific and photographic mission as the seventh and last lunar lander of the American uncrewed Surveyor program. With two previous unsuccessful missions in the Surveyor series, and with Surveyor 7's landing success, Surveyor 7 became the fifth and final spacecraft in the series to achieve a lunar soft landing. A total of 21,091 pictures were transmitted from Surveyor 7 back to Earth.

<i>Clementine</i> (spacecraft) American space project

Clementine was a joint space project between the Ballistic Missile Defense Organization and NASA, launched on January 25, 1994. Its objective was to test sensors and spacecraft components in long-term exposure to space and to make scientific observations of both the Moon and the near-Earth asteroid 1620 Geographos.

<i>Luna 17</i> 1970 Soviet uncrewed lunar mission

LOK Luna 17 was an uncrewed space mission of the Luna program, also called Lunik 17. It deployed the first robotic rover onto the surface of the Moon.

<span class="mw-page-title-main">Lunar Laser Ranging experiments</span> Measuring the distance between the Earth and the Moon with laser light

Lunar Laser Ranging (LLR) is the practice of measuring the distance between the surfaces of the Earth and the Moon using laser ranging. The distance can be calculated from the round-trip time of laser light pulses travelling at the speed of light, which are reflected back to Earth by the Moon's surface or by one of several retroreflectors installed on the Moon. Three were placed by the United States' Apollo program, two by the Soviet Lunokhod 1 and 2 missions, and one by India's Chandrayaan-3 mission.

<span class="mw-page-title-main">Lick Observatory</span> Astronomical observatory in California

The Lick Observatory is an astronomical observatory owned and operated by the University of California. It is on the summit of Mount Hamilton, in the Diablo Range just east of San Jose, California, United States. The observatory is managed by the University of California Observatories, with headquarters on the University of California, Santa Cruz campus, where its scientific staff moved in the mid-1960s. It is named after James Lick.

<span class="mw-page-title-main">Apache Point Observatory</span> Observatory

The Apache Point Observatory is an astronomical observatory located in the Sacramento Mountains in Sunspot, New Mexico, United States, approximately 18 miles (29 km) south of Cloudcroft. The observatory is operated by New Mexico State University (NMSU) and owned by the Astrophysical Research Consortium (ARC). Access to the telescopes and buildings is private and restricted.

Carroll Overton Alley, Jr. was an American physicist. He served as the Principal Investigator on the Apollo Program's Lunar Laser Ranging Experiment, which significantly restricted the possible range of spatial variation of the strength of the gravitational interaction. Alley was a PhD student of Robert Henry Dicke.

<span class="mw-page-title-main">Apache Point Observatory Lunar Laser-ranging Operation</span>

The Apache Point Observatory Lunar Laser-ranging Operation, or APOLLO, is a project at the Apache Point Observatory in New Mexico. It is an extension and advancement of previous Lunar Laser Ranging experiments, which use retroreflectors on the Moon to track changes in lunar orbital distance and motion.

<span class="mw-page-title-main">Lunar distance</span> Distance from center of Earth to center of Moon

The instantaneous Earth–Moon distance, or distance to the Moon, is the distance from the center of Earth to the center of the Moon. Lunar distance, or Earth–Moon characteristic distance, is a unit of measure in astronomy. More technically, it is the semi-major axis of the geocentric lunar orbit. The lunar distance is on average approximately 385,000 km (239,000 mi), or 1.28 light-seconds; this is roughly 30 times Earth's diameter or 9.5 times Earth's circumference. Around 389 lunar distances make up an AU astronomical unit.

<span class="mw-page-title-main">Third-party evidence for Apollo Moon landings</span> Independent confirmations of Apollo Moon landings

Third-party evidence for Apollo Moon landings is evidence, or analysis of evidence, about the Moon landings that does not come from either NASA or the U.S. government, or the Apollo Moon landing hoax theorists. This evidence provides independent confirmation of NASA's account of the six Apollo program Moon missions flown between 1969 and 1972.

<span class="mw-page-title-main">Apollo Lunar Surface Experiments Package</span> Scientific instruments left by the Apollo astronauts on the Moon

The Apollo Lunar Surface Experiments Package (ALSEP) comprised a set of scientific instruments placed by the astronauts at the landing site of each of the five Apollo missions to land on the Moon following Apollo 11. Apollo 11 left a smaller package called the Early Apollo Scientific Experiments Package, or EASEP.

MoonLIGHT is a laser retroreflector developed as a collaboration primarily between the University of Maryland in the United States, and the Italian National Institute for Nuclear Physics - National Laboratories of Frascati (INFN-LNF) to complement and expand on the Lunar Laser Ranging experiment started with the Apollo Program in 1969. MoonLIGHT was planned to be launched in July 2020 as a secondary payload on the MX-1E lunar lander built by the private company Moon Express. However, as of February 2020, the launch of the MX-1E has been canceled. In 2018 INFN proposed to the European Space Agency (ESA) the MoonLIGHT Pointing Actuators (MPAc) project and was contracted by ESA to deliver it. MPAc is an INFN development for ESA, with auxiliary support by the Italian Space Agency (ASI) for prototyping work. In 2021, ESA agreed with NASA to launch MPAc with a Commercial Lunar Payload Services (CLPS) mission. Nova-C, the lander on which MPAc will be integrated, is designed by Intuitive Machines and the landing site is Reiner Gamma. The expected launch date of the Nova-C mission carrying the instrument, IM-3, is in 2025.

<span class="mw-page-title-main">Lunar Crater Radio Telescope</span> Proposed radio telescope

The Lunar Crater Radio Telescope (LCRT) is a proposal by the NASA Institute for Advanced Concepts (NIAC) to create an ultra-long-wavelength radio telescope inside a lunar crater on the far side of the Moon.

<span class="mw-page-title-main">Passive Seismic Experiment Package</span> 1969 American experiment on the Moon

The Passive Seismic Experiment Package (PSEP) was a scientific experiment deployed on the lunar surface by the astronauts of Apollo 11 as part of the Early Apollo Surface Experiments Package (EASEP). The experiment's goal was to determine the structure, tectonic activity, physical nature, and composition of the Moon. PSEP was the first seismometer to be deployed on a planetary body other than Earth.

References

  1. 1 2 3 4 5 6 7 8 9 Faller, James E.; Wampler, E. Joseph (1970). "The Lunar Laser Reflector". Scientific American. 222 (3): 38–49. Bibcode:1970SciAm.222c..38F. doi:10.1038/scientificamerican0370-38. ISSN   0036-8733. JSTOR   24925752. Archived from the original on July 10, 2023. Retrieved July 10, 2023.
  2. Hoffmann, W. F.; Krotkov, R.; Dicke, R. H. (1960). "Precision Optical Tracking of Artificial Satellites". IRE Transactions on Military Electronics. MIL-4 (1): 28–37. doi:10.1109/IRET-MIL.1960.5008190. ISSN   0096-2511. S2CID   51632472. Archived from the original on June 23, 2018. Retrieved July 12, 2023.
  3. 1 2 3 Faller, J. E. (October 2014). "Lunar Laser Ranging" (PDF). 19th International Workshop on Laser Ranging, Annapolis MD, October 27-31, 2014. Archived (PDF) from the original on June 12, 2023. Retrieved June 12, 2023.
  4. 1 2 Alley, C. O.; Bender, P. L.; Dicke, R. H.; Faller, J. E.; Franken, P. A.; Plotkin, H. H.; Wilkinson, D. T. (May 1, 1965). "Optical radar using a corner reflector on the Moon". Journal of Geophysical Research. 70 (9): 2267–2269. Bibcode:1965JGR....70.2267A. doi:10.1029/JZ070i009p02267. Archived from the original on July 21, 2023. Retrieved June 8, 2023.
  5. 1 2 3 4 5 6 7 8 9 10 Bender, P. L.; Currie, D. G.; Dicke, R. H.; Eckhardt, D. H.; Faller, J. E.; Kaula, W. M.; Mulholland, J. D.; Plotkin, H. H.; Poultney, S. K.; Silverberg, E. C.; Wilkinson, D. T.; Williams, J. G.; Alley, C. O. (1973). "The Lunar Laser Ranging Experiment". Science. 182 (4109): 229–238. Bibcode:1973Sci...182..229B. doi:10.1126/science.182.4109.229. ISSN   0036-8075. JSTOR   1737100. PMID   17749298. S2CID   32027563. Archived from the original on June 13, 2023. Retrieved June 13, 2023.
  6. 1 2 3 4 5 6 7 Faller, James; Winer, Irvin; Carrion, Walter; Johnson, Thomas S.; Spadin, Paul; Robinson, Lloyd; Wampler, E. Joseph; Wieber, Donald (October 3, 1969). "Laser Beam Directed at the Lunar Retro-Reflector Array: Observations of the First Returns". Science. 166 (3901): 99–102. Bibcode:1969Sci...166...99F. doi:10.1126/science.166.3901.99. ISSN   0036-8075. PMID   17769756. S2CID   29071972. Archived from the original on April 24, 2023. Retrieved July 10, 2023.
  7. Chabé, Julien; Courde, Clément; Torre, Jean-Marie; Bouquillon, Sébastien; Bourgoin, Adrien; Aimar, Mourad; Albanèse, Dominique; Chauvineau, Bertrand; Mariey, Hervé; Martinot-Lagarde, Grégoire; Maurice, Nicolas; Phung, Duy-Hà; Samain, Etienne; Viot, Hervé (2020). "Recent Progress in Lunar Laser Ranging at Grasse Laser Ranging Station". Earth and Space Science. 7 (3). Bibcode:2020E&SS....700785C. doi: 10.1029/2019EA000785 . S2CID   212785296.