Laser surface velocimeter

Last updated

A laser surface velocimeter (LSV) is a non-contact optical speed sensor measuring velocity and length on moving surfaces. Laser surface velocimeters use the laser Doppler principle to evaluate the laser light scattered back from a moving object. They are widely used for process and quality control in industrial production processes.

Contents

Principle of operation

The differential Doppler process

The differential Doppler process Differenz-Dopplerverfahren.jpg
The differential Doppler process

The Doppler effect (or Doppler shift) is the change in frequency of a wave for an observer moving relative to the source of the wave. The wave has a frequency f and propagates at a speed c When the observer moves at a velocity of v relative to the source, they receive a different frequency f' according to

The above analysis is an approximation for small velocities in comparison to the speed of light which is fulfilled very well for practically all technically relevant velocities.

To make a measurement on moving objects, which can in principle be of any length, requires a measurement design with an observation axis for the sensor which is at a right angle to the direction of movement of the object under investigation.

Laser surface velocimeters work according to the so-called difference Doppler technique. Here, 2 laser beams which are each incident to the optical axis at an angle φ, are superimposed on the surface of the object. For a point P, which moves at velocity v through the intersection point of the two laser beams, the frequencies of the two laser beams are Doppler shifted in accordance with the above formula. At the point P of the object which is moving at the velocity v, the following frequencies therefore occur:

= Unit vectors of laser beams 1 and 2 and in direction detector
= frequencies of the laser beams 1 and 2
= Doppler shifted frequencies of laser beams 1 and 2 in point P

The point P now emits scatter waves in the direction of the detector. As P is moving with the object, the scattered radiation in the direction of the detector is also Doppler shifted. Thus for the frequency of the scatter waves in the direction of the detector, it can be said:

The scatter waves are superimposed on the detector. Due to the interference of the scatter waves from the two laser beams, there are different frequency components in the superimposition. The low-frequency beat frequency of the superimposed scatter radiation which corresponds to the Doppler frequency fD is analyzed metrologically. When both incidental laser beams are at the same frequency (same wavelength), this is seen as a difference of fe2 and fe1 to:

If point P moves vertically with reference to the optical axis and at the same angle of incidence φ, it can be said that:

and

This means the final result is:

The Doppler shift is thus directly proportional to the velocity. A graphic explanation which leads to the same result follows:

Graphic representation

Principle of laser surface velocimetry LSV-Principle.jpg
Principle of laser surface velocimetry

Both the laser beams are superimposed in the measurement volume and in this spatial area, generate an interference pattern of bright and dark fringes.

The fringe spacing Δs is a system constant which depends on the laser wavelength λ and the angle between the laser beams 2φ:

If a particle moves through the fringe pattern, then the intensity of the light it scatters back is modulated.

As a result of this, a photo receiver in the sensor head generates an AC signal, the frequency fD of which is directly proportional to the velocity component of the surface in measurement direction vp and it can be said that:

fD = Doppler frequency
vp = Velocity component in the direction of measurement
Δs = Fringe spacing in the measurement volume

The heterodyne technique

Laser surface velocimeters work in the so-called heterodyne mode, i.e. the frequency of one of the laser beams is shifted by an offset of 40 MHz, e.g.. This makes the fringes in the measurement volume travel with a velocity corresponding to the offset frequency fB. This then makes it possible to identify the direction of movement of the object and to measure at the velocity zero. The resulting modulation frequency fmod at the photo receiver in heterodyne mode is:

The modulation frequency is determined in the controller using Fourier transformation and converted into the measurement value for the velocity vp. The length measurement is made by integrating the velocity signal.

Applications

Laser surface velocimeters measure speed and length of moving surfaces on coils, strips, tubes, fiber, film, paper, foil, composite lumber, or almost any other moving material, including hot steel. [1] LSVs can accomplish various tasks like cut-to-length control, part length and spool length measurement, speed measurement and speed control, differential speed measurement for mass flow control, encoder calibration, ink-jet marker control, and many others.

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

The Doppler effect is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession.

<span class="mw-page-title-main">Wave interference</span> Phenomenon resulting from the superposition of two waves

In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity or lower amplitude if the two waves are in phase or out of phase, respectively. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves as well as in loudspeakers as electrical waves.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Sine wave</span> Wave shaped like the sine function

A sine wave, sinusoidal wave, or sinusoid is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is simple harmonic motion; as rotation, it corresponds to uniform circular motion. Sine waves occur often in physics, including wind waves, sound waves, and light waves, such as monochromatic radiation. In engineering, signal processing, and mathematics, Fourier analysis decomposes general functions into a sum of sine waves of various frequencies, relative phases, and magnitudes.

<span class="mw-page-title-main">Time of flight</span> Timing of substance within a medium

Time of flight (ToF) is the measurement of the time taken by an object, particle or wave to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a way to learn about the particle or medium's properties. The traveling object may be detected directly or indirectly. Time of flight technology has found valuable applications in the monitoring and characterization of material and biomaterials, hydrogels included.

<span class="mw-page-title-main">Beam splitter</span> Optical device which splits a beam of light in two

A beam splitter or beamsplitter is an optical device that splits a beam of light into a transmitted and a reflected beam. It is a crucial part of many optical experimental and measurement systems, such as interferometers, also finding widespread application in fibre optic telecommunications.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.

<span class="mw-page-title-main">Laser Doppler velocimetry</span> Optical method of measuring fluid flow

Laser Doppler velocimetry, also known as laser Doppler anemometry, is the technique of using the Doppler shift in a laser beam to measure the velocity in transparent or semi-transparent fluid flows or the linear or vibratory motion of opaque, reflecting surfaces. The measurement with laser Doppler anemometry is absolute and linear with velocity and requires no pre-calibration.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Continuous-wave radar</span>

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

<span class="mw-page-title-main">Acousto-optic modulator</span> Device which diffracts light via sound waves

An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in sum-frequency generation or difference-frequency generation between phonons and photons.

<span class="mw-page-title-main">Acousto-optics</span> The study of sound and light interaction

Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound through an ultrasonic grating.

Electrophoretic light scattering is based on dynamic light scattering. The frequency shift or phase shift of an incident laser beam depends on the dispersed particles mobility. With dynamic light scattering, Brownian motion causes particle motion. With electrophoretic light scattering, oscillating electric field performs this function.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

The photoacoustic Doppler effect is a type of Doppler effect that occurs when an intensity modulated light wave induces a photoacoustic wave on moving particles with a specific frequency. The observed frequency shift is a good indicator of the velocity of the illuminated moving particles. A potential biomedical application is measuring blood flow.

Saturated absorption spectroscopy measures the transition frequency of an atom or molecule between its ground state and an excited state. In saturated absorption spectroscopy, two counter-propagating, overlapped laser beams are sent through a sample of atomic gas. One of the beams stimulates photon emission in excited atoms or molecules when the laser's frequency matches the transition frequency. By changing the laser frequency until these extra photons appear, one can find the exact transition frequency. This method enables precise measurements at room temperature because it is insensitive to doppler broadening. Absorption spectroscopy measures the doppler-broadened transition, so the atoms must be cooled to millikelvin temperatures to achieve the same sensitivity as saturated absorption spectroscopy.

In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency.

Polarization gradient cooling is a technique in laser cooling of atoms. It was proposed to explain the experimental observation of cooling below the doppler limit. Shortly after the theory was introduced experiments were performed that verified the theoretical predictions. While Doppler cooling allows atoms to be cooled to hundreds of microkelvin, PG cooling allows atoms to be cooled to a few microkelvin or less.

References

  1. "Polytec InFocus 2/2010 page 19" (PDF).

Literature

Operating Principle of Laser Surface Velocimetry (Video)