Late embryogenesis abundant proteins

Last updated

Late embryogenesis abundant proteins (LEA proteins) are proteins in plants, and some bacteria and invertebrates, that protect against protein aggregation due to desiccation or osmotic stresses associated with low temperature. [1] [2] [3] LEA proteins were initially discovered accumulating late in embryogenesis of cotton seeds. [4] Although abundant in seeds and pollens, LEA proteins have been found to protect against desiccation, cold, or high salinity in a variety of organisms, including the bacterium Deinococcus radiodurans , nematode Caenorhabditis elegans , Artemia (brine shrimp), and rotifers. [5] [6] [2]

Contents

Function

LEA proteins function by mechanisms which are distinct from those displayed by heat shock molecular chaperones. [1] Although the causes of LEA protein induction have not yet been determined, conformational changes in transcription factors or integral membrane proteins due to water loss have been suggested. [7] LEA proteins are particularly protective of mitochondrial membranes against dehydration damage. [8]

See also

References

  1. 1 2 Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). "LEA proteins prevent protein aggregation due to water stress". Biochemical Journal. 388 (Part 1): 151–157. doi:10.1042/BJ20041931. PMC   1186703 . PMID   15631617.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Hundertmark M, Hincha DK (2008). "LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana". BMC Genomics. 9: 118. doi: 10.1186/1471-2164-9-118 . PMC   2292704 . PMID   18318901.
  3. Liu, Y; Chakrabortee, S; Li, R; Zheng, Y; Tunnacliffe, A (18 February 2011). "Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation". FEBS Letters. 585 (4): 630–4. Bibcode:2011FEBSL.585..630L. doi:10.1016/j.febslet.2011.01.020. PMID   21251910. S2CID   23589368.
  4. Dure L 3rd, Greenway SC, Galau GA (1981). "Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis". Biochemistry. 20 (14): 4162–4168. doi:10.1021/bi00517a033. PMID   7284317.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  5. Gal TZ, Glazer I, Koltai H (2004). "An LEA group 3 family member is involved in survival of C. elegans during exposure to stress". FEBS Letters. 577 (1–2): 21–26. Bibcode:2004FEBSL.577...21G. doi: 10.1016/j.febslet.2004.09.049 . PMID   15527756. S2CID   21960486.
  6. Menze MA, Boswell L, Toner M, Hand SC (2009). "Occurrence of mitochondria-targeted Late Embryogenesis Abundant (LEA) gene in animals increases organelle resistance to water stress". Journal of Biological Chemistry. 284 (16): 10714–10719. doi: 10.1074/jbc.C900001200 . PMC   2667758 . PMID   19228698.
  7. Caramelo JJ, Iusem ND (2009). "When cells lose water: Lessons from biophysics and molecular biology". Progress in Biophysics and Molecular Biology. 99 (1): 1–6. doi: 10.1016/j.pbiomolbio.2008.10.001 . hdl: 11336/25755 . PMID   18977383.
  8. Tolleter D, Hincha DK, Macherel D (2010). "A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1798 (10): 1926–1933. doi: 10.1016/j.bbamem.2010.06.029 . PMID   20637181.