Launching gantry

Last updated
Underslung (lower-beam) launching gantry used for Skyline guideway construction (2015) Honolulu rail project construction in Waipahu near Fort Weaver Road 2015-07-29.jpg
Underslung (lower-beam) launching gantry used for Skyline guideway construction (2015)

A launching gantry (also called beam launcher, [1] girder launcher, [2] bridge building crane, [3] and bridge-building machine, locally nicknamed the "Iron Monster" [4] ) is a special-purpose mobile gantry crane used in bridge construction, specifically segmental bridges that use precast box girder bridge segments or precast girders in highway and high-speed rail bridge construction projects. The launching gantry is used to lift and support bridge segments or girders as they are placed while being supported by the bridge piers instead of the ground.

Contents

While superficially similar, launching gantry machines should not be confused with movable scaffolding systems, which also are used in segmental bridge construction. Both feature long girders spanning multiple bridge spans which move with the work, but launching gantry machines are used to lift and support precast bridge segments and bridge girders, while movable scaffolding systems are used for cast-in-place construction of bridge segments.

Operation and design

Typically, precast segmental bridges and precast girders are placed using ground-based cranes to lift each segment or girder. However, ground access to the spans may be challenged by the presence of existing infrastructure or bodies of water, or the height to which the segments must be raised can exceed the reach of ground-based cranes. A launching gantry can be used to solve these issues. [5] :38

Pont Re pose dernier voussoir 1.jpg
Pose Voussoir Pont ile de Re.jpg
Pont ile de Re Construction006.jpg
Single upper-beam launching gantry placing bridge segments for the Île de Ré bridge, c.1986–88

The most visible feature of a launching gantry are the twin parallel girders, [5] :38 which can either be above (upper-beam) or below (lower-beam or underslung) the bridge deck. [5] :40 However, a single beam can also be used, typically in upper-beam configuration. [5] :41 The launching gantry machine usually is sized to the construction project, with the length of the twin main girders approximately 2.3 times the distance between spans. This length enables the launching gantry to span the gap between two adjacent bridge piers while providing allowances for the distance required for launching to the next span and flexibility of movement to accommodate curved paths between piers. [5] :38,40 In some cases, hinges have been inserted into the gantry girders to allow tighter curves. [6] The launching gantry girders are supported at each pier by braced frames which have a limited range of movement to facilitate placement of bridge segments or bridge girders; the launching gantry does not generally contact the bridge deck. [5] :38

Two gantry trolleys can run the full length of the launching gantry girders. Each trolley is equipped with two winches: a main winch to suspend the load, and a translation winch to move the trolley along the girders. [5] :38–39 When bridge segments (or bridge girders) are delivered at the ground level, the launching gantry is used to pick them up and raise them to deck or pier height. If the segments (or girders) are delivered instead at the bridge deck level, the launching gantry moves back to allow the forward trolley to pick up the front end of the next segment (or girder), while the back end of the segment (or girder) is supported by the transportation vehicle; as the forward trolley moves forward, the rear trolley takes over supporting the back end from the vehicle. [5] :39

Twin-girder upper-beam launching gantry, during construction of the Viaduc de Rogerville [fr] (completed 1996) A29 Viaduc Rogerville002.jpg
Twin-girder upper-beam launching gantry, during construction of the Viaduc de Rogerville  [ fr ] (completed 1996)

Bridge segments (or bridge girders) are set in place by the launching gantry until the span between adjacent piers is completed. For segmental bridges, typically a span-by-span or balanced-cantilever approach is adopted to place segments. To free up the gantry trolley(s), temporary hangers are used to support each segment after it has been placed. In the span-by-span approach, all the segments for a span are placed before bridge tendons are tensioned; in this fashion, work progresses from one pier towards an adjacent pier. In the balanced-cantilever approach, segments are placed simultaneously on each side and work progresses from a central pier towards the two nearest piers instead. In either case, the launching gantry girders and hangers essentially serve as falsework prior to tensioning. [5] :39–40

Once the bridge span between adjacent piers is completed, the winches on the trolleys are used to lift the gantry girders and "launch" them ahead to the next span. The process of lifting and placing bridge segments (or girders) followed by launching the gantry girders ahead is repeated until the bridge is complete. [4] [5] :39

An example of a large launching gantry is the SLJ900 designed in China by the Shijiazhuang Railway Design Institute and manufactured by the Beijing Wowjoint Machinery Company. This launching gantry is 91 metres (299 ft) long, 7 metres (23 ft) wide, and weighs 580 tonnes (640 short tons). [7] When driving, the machine is supported by 64 wheels, in four sections of 16 wheels each (forming two trucks, one at each end). When launching, the forward end of the machine is supported (on sliding rails) by a strut lowered onto a bridge support column, while the truck for that end hangs off the gantry backbone with no support from beneath. Once the gantry straddles the open span, the bridge segment is lowered onto the bridge support piers, and the process reverses to retract the launching gantry. The SLJ900 moves at 8 km/h (5 mph) unloaded, and 5 km/h (3 mph) carrying a bridge segment. [4]

Main girder designs (typical)
Honeycomb girder.jpg
Honeycomb
Truss girder.jpg
Truss
Box girder.jpg
Box

Launching gantries are often distinguished by the design of the main girders.

Honeycomb girder

The honeycomb girder launching gantry was created in 1999 by ZZHZ, and has proven suitable to a lifting range of 5 to 300 tonnes (5.5 to 330.7 short tons).

The main girder of a honeycomb girder is fabricated from welded plates, forming an isosceles triangle cross-section. Regular hexagonal holes are cut in the inclined web plates to reduce wind resistance. [8] Because the honeycomb girder is formed by relatively long seam welds joining plates, the welds will not lose integrity easily due to small welding defects.

Truss girder

The main girder of a truss girder is fabricated from welded steel poles. The welds in a truss girder are point-to-point (joining steel poles to other poles), which requires more stringent welding technology and technique. With small self-weight and large deflection, the truss girder launching gantry is suitable for highway bridge construction projects.

Box girder

The main girder of a box girder also is fabricated from welded plates. This type of girder is usually used in high-speed railway bridge construction projects. [9]

Related Research Articles

<span class="mw-page-title-main">Crane (machine)</span> Type of machine

A crane is a type of machine, generally equipped with a hoist rope, wire ropes or chains, and sheaves, that can be used both to lift and lower materials and to move them horizontally. It is mainly used for lifting heavy objects and transporting them to other places. The device uses one or more simple machines to create mechanical advantage and thus move loads beyond the normal capability of a human. Cranes are commonly employed in transportation for the loading and unloading of freight, in construction for the movement of materials, and in manufacturing for the assembling of heavy equipment.

<span class="mw-page-title-main">Plate girder bridge</span> Type of bridge

A plate girder bridge is a bridge supported by two or more plate girders.

<span class="mw-page-title-main">Box girder bridge</span> Type of bridge

A box girder bridge, or box section bridge, is a bridge in which the main beams comprise girders in the shape of a hollow box. The box girder normally comprises prestressed concrete, structural steel, or a composite of steel and reinforced concrete. The box is typically rectangular or trapezoidal in cross-section. Box girder bridges are commonly used for highway flyovers and for modern elevated structures of light rail transport. Although the box girder bridge is normally a form of beam bridge, box girders may also be used on cable-stayed and other bridges.

<span class="mw-page-title-main">Eastern span replacement of the San Francisco–Oakland Bay Bridge</span> Seismic stabilization megaproject in California, United States (2002-2013)

The eastern span replacement of the San Francisco–Oakland Bay Bridge was a construction project to replace a seismically unsound portion of the Bay Bridge with a new self-anchored suspension bridge (SAS) and a pair of viaducts. The bridge is in the U.S. state of California and crosses the San Francisco Bay between Yerba Buena Island and Oakland. The span replacement took place between 2002 and 2013, and is the most expensive public works project in California history, with a final price tag of $6.5 billion, a 2,500% cost overrun from the original estimate of $250 million. Originally scheduled to open in 2007, several problems delayed the opening until September 2, 2013. With a width of 258.33 ft (78.74 m), comprising 10 general-purpose lanes, it is the world's widest bridge according to Guinness World Records.

<span class="mw-page-title-main">Bangabandhu Bridge</span> Bridge in Tangail and Sirajganj

Bangabandhu Bridge, also known as the Jamuna Multi-purpose Bridge is a bridge opened in Bangladesh in June 1998. It connects Bhuapur on the Jamuna River's east bank to Sirajganj on its west bank. It was the 11th longest bridge in the world when constructed in 1998 and at present is the 6th longest bridge in South Asia. The Jamuna River, which it spans, is one of the three major rivers of Bangladesh, and is fifth largest in the world in discharge volume.

<span class="mw-page-title-main">Gantry crane</span> Type of overhead crane used in industrial environments

A gantry crane is a crane built atop a gantry, which is a structure used to straddle an object or workspace. They can range from enormous "full" gantry cranes, capable of lifting some of the heaviest loads in the world, to small shop cranes, used for tasks such as lifting automobile engines out of vehicles. They are also called portal cranes, the "portal" being the empty space straddled by the gantry.

<span class="mw-page-title-main">Medium Girder Bridge</span>

The Medium Girder Bridge (MGB) is a lightweight, man portable bridge and can be assembled without help from heavy equipment. In addition, it is also a deck type, two-girder bridging system capable of carrying loads up to and including Main battle tanks (MBT).

<span class="mw-page-title-main">Bandra–Worli Sea Link</span> Bridge connecting Bandra Basitt and Worli, Mumbai, India

The Bandra-Worli Sea Link is a 5.6 km long, 8-lane wide bridge that links Bandra in the Western Suburbs of Mumbai with Worli in Central Mumbai. It is the longest sea bridge, as well as the 4th longest bridge in India after Bhupen Hazarika Setu, Dibang River Bridge and Mahatma Gandhi Setu. It is a cable-stayed bridge with pre-stressed concrete-steel viaducts on either side. It was planned as a part of the proposed Western Freeway that would link the Western Suburbs to Nariman Point in Mumbai's main business district, but is now planned to become part of the Coastal Road to Kandivali.

<span class="mw-page-title-main">Tied-arch bridge</span>

A tied-arch bridge is an arch bridge in which the outward horizontal forces of the arch(es) caused by tension at the arch ends to a foundation are countered by equal tension of its own gravity plus any element of the total deck structure such great arch(es) support. The arch(es) have strengthened chord(s) that run to a strong part of the deck structure or to independent tie-rods below the arch ends.

<span class="mw-page-title-main">Overhead crane</span> Type of crane found in industrial environments

An overhead crane, commonly called a bridge crane, is a type of crane found in industrial environments. An overhead crane consists of two parallel rails seated on longitudinal I-beams attached to opposite steel columns by means of brackets. The traveling bridge spans the gap. A hoist, the lifting component of a crane, travels along the bridge. If the bridge is rigidly supported on two or more legs running on two fixed rails at ground level, the crane is called a gantry crane or a goliath crane.

<span class="mw-page-title-main">Girder bridge</span> Bridge built of girders placed on bridge abutments and foundation piers

A girder bridge is a bridge that uses girders as the means of supporting its deck. The two most common types of modern steel girder bridges are plate and box.

<span class="mw-page-title-main">Prai River Bridge</span> Bridge in Perai, Butterworth Outer Ring Road

Perai River Bridge is a dual-three lane cable stayed bridge connecting the banks of the Perai River in Perai, Penang, Malaysia. It is part of the Butterworth Outer Ring Road (BORR).

<span class="mw-page-title-main">Mabey Logistic Support Bridge</span>

The Mabey Logistic Support Bridge is a portable pre-fabricated truss bridge, designed for use by military engineering units to upgrade routes for heavier traffic, replace civilian bridges damaged by enemy action or floods etc., replace assault and general support bridges and to provide a long span floating bridge capability. The bridge is a variant of the Mabey Compact 200 bridge, with alterations made to suit the military user as well as a ramp system to provide ground clearance to civilian and military vehicles.

<span class="mw-page-title-main">La Vicaria Arch Bridge</span> Bridge in Yeste, Albacete

La Vicaria Bridge is a through arch bridge that spans the Segura River, where it meets La Fuensanta Reservoir near Yeste, in the province of Albacete, Spain. It forms part of a future road that will join Yeste with Letur and the neighbouring area to the east. The bridge has 2 vehicle lanes and 2 sidewalks.

<span class="mw-page-title-main">Ironworker</span> Tradesman who works in the ironworking industry

An ironworker is a tradesman who works in the iron-working industry. Ironworkers assemble the structural framework in accordance with engineered drawings and install the metal support pieces for new buildings. They also repair and renovate old structures using reinforced concrete and steel. Ironworkers may work on factories, steel mills, and utility plants.

<span class="mw-page-title-main">Vidyasagar Setu</span> Cable-stayed toll bridge in West Bengal, India

Vidyasagar Setu, also known as the Second Hooghly Bridge, is a toll bridge over the Hooghly River in West Bengal, India, linking the cities of Kolkata and Howrah.

<span class="mw-page-title-main">Geobukseon Bridge</span> Bridge in Yeosu, South Korea

The Geobukseon Bridge (Korean: 거북선대교), also called the Second Dolsan Bridge (Korean: 제2돌산대교), is the main bridge on the Yeosu Road between Udu-ri, Dolsan and Jonghwa-dong, linking the Port of Yeosu with Dolsando across the Namhae sea. The bridge is floating cable-stayed bridge with 464m (35+82+230+82+35m) length and its construction started in June 2008. It opened in April 2012 and carries four lanes of motor vehicle traffic. The new link was intended to reduce traffic congestion on the First Dolsan Bridge which opened in 1985, and act as an important infra-structure link during the Yeosu Expo which had been held from May, 2012 for three months. The bridge was built by contractor Daelim Industrial Co. Ltd for client Iksan Regional Construction & Management Administration. Contract cost is US$60million, which includes a 460m long tunnel at one end, and a 280m long approach bridge.

<span class="mw-page-title-main">ZZHZ</span>

Zhengzhou Huazhong Construction Machinery Co., Ltd is a manufacturer in China, which produces gantry crane, overhead crane and launching gantry. Song Facai is the chief founder and present general manager is Song Pengwei. It has a subsidiary company:Zhengzhou Huazhong Construction Machinery Installation Company for contracting all installation business

The Harbor Bridge Project is the replacement of the existing through arch bridge that crosses the Corpus Christi Ship Channel, which serves the Port of Corpus Christi in Corpus Christi, Texas, with a modern cable-stayed bridge design. The route will connect with SH 286 at its southern terminus and US 181 on the north. Groundbreaking on construction took place on August 8, 2016 and was scheduled to be completed by the spring of 2020, but was extensively delayed due to engineering and design issues, and is tentatively planned to be completed in 2025.

<span class="mw-page-title-main">Movable scaffolding system</span> Self-launching form used in bridge construction

A movable scaffolding system (MSS) is a special-purpose self-launching form used in bridge construction, specifically prestressed concrete bridges with segments or spans that are cast in place. The movable scaffolding system is used to support a form while the concrete is cured; once the segment is complete, the scaffold and forms are moved to the end of the new segment and another segment is poured.

References

  1. "Beam Launcher". Zhengzhou Huazhong Construction Machinery Co., Ltd.
  2. "Segment Assembled Bridge Girder Launcher". Zhengzhou Huazhong Construction Machinery Co., Ltd.
  3. "Bridge Building Crane for Highway". Zhengzhou Huazhong Construction Machinery Co., Ltd.
  4. 1 2 3 Calver, Tom (20 July 2018). "The mega-machines helping China link the world". BBC News. Article with animated diagram of functioning.
  5. 1 2 3 4 5 6 7 8 9 10 Rosignoli, Marco (Winter 2010). "Self-launching erection machines for precast concrete bridges" (PDF). PCI Journal. Precast/Prestressed Concrete Institute: 36–57. Retrieved 29 December 2020.
  6. "Hinge Launching Gantry (LG) - An innovative solution for curve bridges". NRS Bridge Construction Equipment. Retrieved 29 December 2020.
  7. Drummond-Roe, Cecilia (4 December 2017). "Engineering feat of the month: the SLJ900/32 bridge building machine". fircroft.com. Fircroft. Retrieved 8 April 2018.
  8. "Walking Type Honeycomb Girder Launching Gantry". Zhengzhou Huazhong Construction Machinery Co., Ltd.
  9. "Launching Gantry for Highspeed Railway". Zhengzhou Huazhong Construction Machinery Co., Ltd.