A Lay-Up process is a moulding process for composite materials, in which the final product is obtained by overlapping a specific number of different layers, usually made of continuous polymeric or ceramic fibres and a thermoset polymeric liquid matrix. It can be divided into Dry Lay-up and Wet Lay-Up, depending on whether the layers are pre-impregnated or not. Dry Lay-up is a common process in the aerospace industry, due to the possibility of obtaining complex shapes with good mechanical properties, characteristics required in this field. On the contrary, as Wet Lay-Up does not allow uni-directional fabrics, which have better mechanical properties, it is mainly adopted for all other areas, which in general have lower requirements in terms of performance. [1] [2]
The main stages of the Lay-Up process are cutting, lamination and polymerization.[ citation needed ] Even though some of the production steps can be automated, this process is mainly manual (hence often referred to as the Hand Lay-Up process), leading to laminates with high production costs and low production rates with respect to other techniques.[ citation needed ] Hence, nowadays, it is mainly suitable for small series production runs of 10 to 1000 parts. [2] [3]
Cutting fabrics is the first stage of the Lay-Up process. Even though the fibres, in general, have high tensile strength, the shear strength is usually quite low, so they are fairly easy to cut. This process can be manual, semi-automatic or completely automatic. [1]
As far as cutting tools are concerned, the most common are scissors, cutters, knives and saws. More automatized alternatives are die-cutting systems, which allow higher production rates to be reached while limiting overall costs, as they allow more layers of fabric to be cut simultaneously.[ citation needed ] These methods require different skills from the operator and provide different finish precisions, but they all are mechanical procedures and have one major disadvantage in common: the physical contact between the cutting tool and the fibres. [4] An alternative process with less friction is the ultrasound method, which consists of cutting the fabrics with a blade actuated by high-frequency mechanical vibrations, produced by an internal source integrated into the system. [1] There are also completely contact-free cutting techniques, such as laser cutting and water jet cutting, both usually embedded on CNC machines.[ citation needed ] The former is obtained through a convergent radiation beam which vaporizes the material underneath and uses pressurized gas to remove the volatile particles and the melted material. The latter is based on a high-pressure liquid beam which reaches a velocity of 2.5 times the speed of sound, creating a pressure on the fabric which is higher than the compression resistance of the material and resulting in a net cut.[ citation needed ] Both these methods share a common disadvantage which needs to be considered before choosing the cutting methods: the beams create high-temperature areas along the cut axes, in which the physical characteristics of the material can be altered significantly. [1] [5]
During the cutting process, a fundamental parameter to be considered is the nesting layout, which is the arrangement of the different shapes to be cut from the fabric in order to reduce the scraps.[ citation needed ] The patterns are generally created digitally and, when possible, given to a CNC machine or, otherwise, replicated by hand. [1]
Lamination of the fabrics is the second stage of the Lay-Up process. It is the procedure of overlapping all the layers in the correct order and with the correct orientation. In the case of Wet Lay-Up, the preparation of the resin is included in this operation, as the fabrics are not already impregnated. Lamination is usually performed in a clean-room to avoid particle inclusions within the layers, which would interfere with the characteristics of the final product. [1]
The most important tool is the mould, which can be male or female depending on the application. It can be made of different materials, depending on the shrinkage and the thermal expansion coefficient of the composite material, the stiffness required, the surface finish needed, the draft angles and the bending angle.[ citation needed ] Furthermore, the mould must be stable at the lamination temperature, bear the operative pressure, be resistant to wear, be compatible with the other tools used, be resistant to washing solvents and it must be easy to apply release agents. [6]
The first step of lamination is to apply a release agent on the mould, fundamental to avoid adhesion between the resin and the mould itself. If needed for surface finish, a layer of peel-ply may be added.[ citation needed ] Peel-plies are nylon films used to obtain a specific roughness of the surface on which they are applied, to protect them during storage and to trap volatile particles during polymerization.[ citation needed ] Then, all the fabric layers are overlapped following the instructions on the ply-book, which contains a list of all the operations to be performed during this process.[ citation needed ] Usually, intermediate compacting is performed every 4 or 5 layers, in order to let the air evacuate and to obtain a final product with better mechanical characteristics. [1]
After all the fabric layers have been put in the right position, another layer of peel-ply is applied on top, with the same purpose as the first one. A sequence of other layers is added above it: the release film, which separates the laminate from the other layers but still allows the excess resin to pass through;[ citation needed ] the bleeder, whose main function is to absorb the excess resin; a barrier, to separate the bleeder from the breather; the breather, to distribute the vacuum homogeneously across the external surfaces and to avoid any folds of the vacuum bag being transferred to the laminate surface; the vacuum bag, a flexible polymeric film, typically made of nylon, able to maintain the vacuum created with a vacuum pump. Further important elements are the valves and the sealant used to hermetically seal the vacuum bag. [1] [7] [8] [9]
This process can be manual, semi-automatic or completely automatic. When done entirely by hand, lamination is a long and difficult process (due to the strict tolerances required). An alternative is a semi-automatic - also called "mechanically assisted" - process, consisting of a machine which handles the layers, which are then applied on the mould by an operator. It is completely automatic if a machine, such as an automatic tape laying machine, can also place the layers in the right position and orientation. These automatic methods allow high production rates to be reached. [1]
Polymerization of the laminate is the third and final stage of the Lay-Up process. This phase is of utmost importance to obtain the required characteristics of the final product. [1]
This process can be done at room temperature with just a vacuum pump, to control vacuum, with the aid of an industrial oven connected to a vacuum pump, to control temperature and vacuum, or with an autoclave, to control temperature, vacuum and also hydrostatic pressure. [1] [10]
Polymerization in an autoclave is a technique which allows laminates with the best mechanical properties to be obtained, but it is the most expensive and permits only the use of open moulds. The advantage is due to the fact that the pressure helps to bond the composite layers and to eject air inclusions and volatile products, increasing the quality of the process. [8] [11] Each combination of fabric and resin has its own optimal polymerization cycles, dependent on the wettability of the fibres and resin properties, like viscosity and gel point.[ citation needed ] Typically, the three cycles of temperature, pressure and vacuum are studied experimentally to obtain the best combination of the three parameters. Polymerization in an industrial oven is similar but without pressure control. It is less expensive and therefore used for all those laminates which do not need to have the very highest mechanical strength and stiffness properties. Moreover, as industrial ovens are, in general, bigger than autoclaves, they are used for components with non-standard dimensions. [1]
Polymerization with matched-die moulding is used for plane or simple-geometry laminates and can include a vacuum pump and an electric or hydraulic heat source. It is made of a press with male and female moulds that close to form a gap with the shape of the component, the width of which is regulated to control the thickness of the part. The press can not apply hydrostatic pressure as in an autoclave, but only a vertical one. Matched-die moulding allows a very high degree of dimensional control, a good surface finish on both surfaces, and reasonable production rates but, on the other hand, it may allow fibre misalignment and it is very expensive. [1] [8] [12]
As Meola et al. pointed out in Infrared thermography in the evaluation of aerospace composite materials, "Several different types of defects may occur during the fabrication of composites, the most common being fibre/play misalignment, broken fibres, resin cracks or transversal ply cracks, voids, porosity, slag inclusions, nonuniform fibre/resin volume ratio, disbonded interlaminar regions, kissing bonds, incorrect cure and mechanical damage around machined holes and/or cuts." [13]
Also, three main problems related to cutting polymerized composite materials must be considered. The first is that reinforcement fibers are abrasive, hence traditional cutting tools are not suitable, as their lives would be very short and their blunt edges would damage the materials.[ citation needed ] The second is that composite materials have low thermal conductivity, which can cause heat accumulations and deformations.[ citation needed ] The last is that composite materials tend to delaminate when cut, therefore it is necessary to consider this when choosing a cutting method. [14] [15]
A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.
Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins. They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.
Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.
Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
Pre-preg is a composite material made from "pre-impregnated" fibers and a partially cured polymer matrix, such as epoxy or phenolic resin, or even thermoplastic mixed with liquid rubbers or resins. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The thermoset matrix is only partially cured to allow easy handling; this B-Stage material requires cold storage to prevent complete curing. B-Stage pre-preg is always stored in cooled areas since heat accelerates complete polymerization. Hence, composite structures built of pre-pregs will mostly require an oven or autoclave to cure. The main idea behind a pre-preg material is the use of anisotropic mechanical properties along the fibers, while the polymer matrix provides filling properties, keeping the fibers in a single system.
Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures. This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle while a delivery eye on a carriage traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle to the rotational axis. The most common filaments are glass or carbon and are impregnated with resin by passing through a bath as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the mandrel is autoclaved or heated in an oven or rotated under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.
Nonwoven fabric or non-woven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.
Laminated glass is a type of safety glass consisting of two or more layers of glass with one or more thin polymer interlayers between them which prevent the glass from breaking into large sharp pieces. Breaking produces a characteristic "spider web" cracking pattern when the impact is not enough to completely pierce the glass.
Spray-Up also known as chop method of creating fiberglass objects by spraying short strands of glass out of a pneumatic gun. This method is used often when one side of the finished product is not seen, or when large quantities of a product must be made cheaply and quickly with moderate strength requirements. Corvette fenders and boat dinghies are commonly manufactured this way.
Vulcanized fibre also known as red fibre is a laminated plastic composed of only cellulose. This material is a tough, resilient, hornlike material that is lighter than aluminium, tougher than leather, and stiffer than most thermoplastics. The newer wood-laminating grade of vulcanized fibre is used to strengthen wood laminations used in skis, skateboards, support beams and as a sub-laminate under thin wood veneers.
Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
Vacuum bag moulding is the primary composite manufacturing process for producing laminated structures. It is common in the aerospace industry.
Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.
Out of autoclave composite manufacturing is an alternative to the traditional high pressure autoclave (industrial) curing process commonly used by the aerospace manufacturers for manufacturing composite material. Out of autoclave (OOA) is a process that achieves the same quality as an autoclave but through a different process. OOA curing achieves the desired fiber content and elimination of voids by placing the layup within a closed mold and applying vacuum, pressure, and heat by means other than an autoclave. An RTM press is the typical method of applying heat and pressure to the closed mold. There are several out of autoclave technologies in current use including resin transfer molding (RTM), Same Qualified Resin Transfer Molding (SQRTM), vacuum-assisted resin transfer molding (VARTM), and balanced pressure fluid molding. The most advanced of these processes can produce high-tech net shape aircraft components.
Tailored fiber placement (TFP) is a textile manufacturing technique based on the principle of sewing for a continuous placement of fibrous material for composite components. The fibrous material is fixed with an upper and lower stitching thread on a base material. Compared to other textile manufacturing processes fiber material can be placed near net-shape in curvilinear patterns upon a base material in order to create stress adapted composite parts.
Composite repairs are performed on damaged laminate structures, fibre reinforced composites and other composite materials. The bonded composite repair reduces stresses in the damaged region and prevents cracks from opening or growing. Composite materials are used in a wide range of applications in aerospace, marine, automotive, surface transport and sports equipment markets. Damage to composite components is not always visible to the naked eye and the extent of damage is best determined for structural components by suitable Non Destructive Test (NDT) methods.
A void or a pore is three-dimensional region that remains unfilled with polymer and fibers in a composite material. Voids are typically the result of poor manufacturing of the material and are generally deemed undesirable. Voids can affect the mechanical properties and lifespan of the composite. They degrade mainly the matrix-dominated properties such as interlaminar shear strength, longitudinal compressive strength, and transverse tensile strength. Voids can act as crack initiation sites as well as allow moisture to penetrate the composite and contribute to the anisotropy of the composite. For aerospace applications, a void content of approximately 1% is still acceptable, while for less sensitive applications, the allowance limit is 3-5%. Although a small increase in void content may not seem to cause significant issues, a 1-3% increase in void content of carbon fiber reinforced composite can reduce the mechanical properties by up to 20%
Autoclave moulding is an advanced composite manufacturing process.