Like terms

Last updated

In mathematics, like terms are summands in a sum that differ only by a numerical factor. [1] Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients.

Contents

More generally, when some variable are considered as parameters, like terms are defined similarly, but "numerical factors" must be replaced by "factors depending only on the parameters".

For example, when considering a quadratic equation, one considers often the expression

where and are the roots of the equation and may be considered as parameters. Then, expanding the above product and regrouping the like terms gives

Generalization

In this discussion, a "term" will refer to a string of numbers being multiplied or divided (that division is simply multiplication by a reciprocal) together. Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression:

There are two terms in this expression. Notice that the two terms have a common factor, that is, both terms have an . This means that the common factor variable can be factored out, resulting in

If the expression in parentheses may be calculated, that is, if the variables in the expression in the parentheses are known numbers, then it is simpler to write the calculation . and juxtapose that new number with the remaining unknown number. Terms combined in an expression with a common, unknown factor (or multiple unknown factors) are called like terms.

Examples

Example

To provide an example for above, let and have numerical values, so that their sum may be calculated. For ease of calculation, let and . The original expression becomes

which may be factored into

or, equally,

.

This demonstrates that

The known values assigned to the unlike part of two or more terms are called coefficients. As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.

Simplifying an expression

Take the expression, which is to be simplified:

The first step to grouping like terms in this expression is to get rid of the parentheses. Do this by distributing (multiplying) each number in front of a set of parentheses to each term in that set of parentheses:

The like terms in this expression are the terms that can be grouped together by having exactly the same set of unknown factors. Here, the sets of unknown factors are and . By the rule in the first example, all terms with the same set of unknown factors, that is, all like terms, may be combined by adding or subtracting their coefficients, while maintaining the unknown factors. Thus, the expression becomes

The expression is considered simplified when all like terms have been combined, and all terms present are unlike. In this case, all terms now have different unknown factors, and are thus unlike, and so the expression is completely simplified.

Footnotes

  1. "Like terms in Depth". Math Online. Retrieved 2008-09-07.

Related Research Articles

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

<span class="mw-page-title-main">Elementary algebra</span> Basic concepts of algebra

Elementary algebra, also known as high school algebra or college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In mathematics, a coefficient is a multiplicative factor involved in some term of a polynomial, a series, or any other type of expression. It may be a number without units, in which case it is known as a numerical factor. It may also be a constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any expression. When the combination of variables and constants is not necessarily involved in a product, it may be called a parameter. For example, the polynomial has coefficients 2, −1, and 3, and the powers of the variable in the polynomial have coefficient parameters , , and .

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of two or more linear equations involving the same variables. For example,

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.

In mathematics, an implicit equation is a relation of the form where R is a function of several variables. For example, the implicit equation of the unit circle is

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

<span class="mw-page-title-main">Equation solving</span> Finding values for variables that make an equation true

In mathematics, to solve an equation is to find its solutions, which are the values that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values such that, when substituted for the unknowns, the equation becomes an equality. A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set.

<span class="mw-page-title-main">Expression (mathematics)</span> Symbolic description of a mathematical object

In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers, variables, operations, and functions. Other symbols include punctuation marks and brackets, used for grouping where there is not a well-defined order of operations.

In statistics, and particularly in econometrics, the reduced form of a system of equations is the result of solving the system for the endogenous variables. This gives the latter as functions of the exogenous variables, if any. In econometrics, the equations of a structural form model are estimated in their theoretically given form, while an alternative approach to estimation is to first solve the theoretical equations for the endogenous variables to obtain reduced form equations, and then to estimate the reduced form equations.

<span class="mw-page-title-main">Trinomial</span> Polynomial that has three terms

In elementary algebra, a trinomial is a polynomial consisting of three terms or monomials.

In mathematics, a variable is a symbol, typically a letter, that holds a place for constants, often numbers. One say colloquially that the variable represents or denotes the object, and that the object is the value of the variable.

In mathematics, an algebraic expression is an expression built up from constants variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots .. For example, is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression:

A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions.

In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term. The method is used to bring formulas into a desired form.

In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.

<i>Jade Mirror of the Four Unknowns</i> 1303 mathematical monograph by Zhu Shijie

Jade Mirror of the Four Unknowns, Siyuan yujian, also referred to as Jade Mirror of the Four Origins, is a 1303 mathematical monograph by Yuan dynasty mathematician Zhu Shijie. Zhu advanced Chinese algebra with this Magnum opus.