A line array is a loudspeaker system that is made up of a number of usually identical loudspeaker elements mounted in a line and fed in phase, to create a near-line source of sound. The distance between adjacent drivers is close enough that they constructively interfere with each other to send sound waves farther than traditional horn-loaded loudspeakers, and with a more evenly distributed sound output pattern.
Line arrays can be oriented in any direction, but their primary use in public address is in vertical arrays which provide a very narrow vertical output pattern useful for focusing sound at audiences without wasting output energy on ceilings or empty air above the audience. A vertical line array displays a normally wide horizontal pattern useful for supplying sound to the majority of a concert audience. By contrast, horizontal line arrays have a very narrow output pattern horizontally but a tall pattern vertically. A row of subwoofers along the front edge of a concert stage can behave as a horizontal line array unless the signal supplied to them is adjusted (delayed, polarized, equalized) to shape the pattern otherwise. Loudspeakers can be designed to be arrayed horizontally without behaving as a horizontal line source. [1]
Modern line arrays use separate drivers for high-, mid- and low-frequency passbands. For the line source to work, the drivers in each passband need to be in a line. Therefore, each enclosure must be designed to rig together closely to form columns composed of high-, mid- and low-frequency speaker drivers. Increasing the number of drivers in each enclosure increases the frequency range and maximum sound pressure level, while adding additional boxes to the array will also lower the frequency in which the array achieves a directional dispersion pattern.
The large format line array has become the standard for large concert venues and outdoor festivals, where such systems can be flown (rigged, suspended) from a structural beam, ground support tower [2] or off a tall A-frame truss tower. [3] Since the enclosures rig together and hang from a single point, they are more convenient to assemble and cable than other methods of arraying loudspeakers. The lower portion of the line array is generally curved backwards to increase dispersion at the bottom of the array and allow sound to reach more audience members. Typically, cabinets used in line arrays are trapezoidal, connected by specialized rigging hardware. [4]
The line array effect of the narrowing of the beam with increasing frequency was first demonstrated by acoustical pioneer Harry Olson. [5] He published his findings in his 1957 text, Acoustical Engineering. [6] Olson used line array concepts to develop the column speaker in which vertically aligned drivers in a single enclosure produced mid-range output in a wide horizontal and narrow vertical pattern. Line arrays have been around for over half a century but until recently most were voice range only. The application for these was for highly reverberant spaces where a narrow vertical design kept from exciting the reverberant field. [7] A multi-band line array elements in a horizontally oriented enclosure was suggested by Joseph D'Appolito in 1983. [8] However, the product was popularized majorly by L-Acoustics' V-DOSC line array introduced in 1992. [9] This led to the discovery that a more level and smoother frequency response can come from fewer boxes in a line array. The industry also soon found that there was no destructive interference in the horizontal plane and waves combine mostly in phase in the vertical plane, causing many loudspeaker manufacturers to quickly develop their own similar product. [7]
Pure line array theory is based on pure geometry and the thought experiment of the "free field" where sound is free to propagate free of environmental factors such as room reflections or temperature refraction.
In the free field, sound which has its origin at a point (a point source) will be propagated equally in all directions as a sphere. Since the surface area of a sphere = 4π r2 where r is the radius, every doubling of the radius results in a four-fold increase in the sphere's surface area. The result of this is that the sound intensity quarters for every doubling of distance from the point source. Sound intensity is the acoustic power per unit area, and it decreases as the surface area increases since the acoustic power is spread over a greater area. The ratio between two acoustic pressures in deciBels is expressed by the equation dB = 20log(p1/p2), so for every doubling of distance from the point source p1 = 1 and p2 = 2, thus there is a sound pressure decrease of approximately 6 dB.
A line source is a hypothetical one-dimensional source of a sound, as opposed to a dimensionless point source. As a line source propagates sound equally in all directions in the free field, the sound propagates in the shape of a cylinder rather than a sphere. Since the surface area of the curved surface of a cylinder = 2π r h, where r is the radius and h is the height, every doubling of the radius results in a doubling of the surface area, thus the sound intensity halves with each doubling of distance from the line source. Since p1 = 1 and p2 = 4 for every distance doubled, this results in a sound pressure decrease of approximately 3 dB. [10] [11]
In reality, dimensionless point sources and one-dimensional line sources cannot exist; however, calculations can be made based on these theoretical models for simplicity. Thus there is only a certain distance where a line source of a finite length will produce a sound pressure higher than an equally loud point source.
Interference pattern is the term applied to the dispersion pattern of a line array. It means that when you stack several loudspeakers vertically, the vertical dispersion angle decreases because the individual drivers are out of phase with each other at listening positions off-axis in the vertical plane. The taller the stack is, the narrower the vertical dispersion will be and the higher the sensitivity will be on-axis. A vertical array of drivers will have the same horizontal polar pattern as a single driver.
Other than the narrowing vertical coverage, the length of the array also plays a role in what wavelengths will be affected by this narrowing of dispersion. The longer the array, the lower frequency the pattern will control. [7] At frequencies below 100 Hz (wavelength of 11.3 feet (3.4 m)) the line array which is less than approximately 3 meter long will start to become omnidirectional, so the system will not conform to line array theory across all frequencies. [12] Above about 400 Hz the driver cones themselves become directional, again violating the theory's assumptions, and at high frequencies, many practical systems use directional waveguides whose behavior cannot be described using classical line array theory. In short, the geometry of real-world audio line arrays as used in public address systems can only be modeled approximately by line array theory, and only in the 100–400 Hz range. [12]
Practical line array systems act as line sources only in the low- and mid-frequencies. For the high frequencies, some other method must be employed to attain directional characteristics that match those of the lows and mids. The most practical method for reinforcement systems is to use waveguides (horns) coupled to compression drivers. Each horn must have a very narrow vertical and a very wide horizontal dispersion.
Rather than using constructive and destructive interference, horns achieve directionality by reflecting sound into a specified coverage pattern. In a properly designed line array system, that pattern should closely match the low-frequency directional characteristic of the array. If the array's vertical dispersion is 60 degrees and there are 12 boxes, then each horn would need to have 5 degree vertical coverage. (Narrow vertical coverage has the benefit that it minimizes multiple arrivals, which would harm intelligibility.) If this is achieved, then the wave guide elements can be integrated into the line array and, with proper equalization and crossovers, the beam from the high frequencies and the constructive interference of the low frequencies can be made to align so that the resulting arrayed system provides consistent coverage. [13]
Two configurations that are rarely used are the straight and curved array. The problem with curved arrays is that they are not very well suited to the average venue. While the bottom half will be angled down to provide extra coverage at locations close to the front of the stage, the top half will be angled upwards at the ceiling. Also, the problem with straight line arrays is that the beam is far too narrow at high frequencies. A solution to utilize the best features of both arrays is to use a curvilinear or ‘J’ array. This is made up of a straight line portion and a curved portion, normally at the bottom. This provides a long throw straight line component for people relatively far away, while the curve at the bottom acts as an in-fill for the area underneath the array that would otherwise be neglected
Spiral arrays are the next development from J-arrays, and have a superior frequency response due to their similar polar pattern at shifting frequencies, while still retaining the long throw and in-fill benefits that J-arrays provide. The concept is that spiral arrays are curved all the way along the array, but the curve is progressive. This means that the top of the array is almost straight with angles of 1° between boxes, and increases at the bottom to between 6° and about 10°. A well-designed spiral array could have an almost constant directivity pattern with frequency, with some small lobes exhibited at low frequencies. [14]
Large-format line arrays are designed for arena and amphitheatre tours, large venues and outdoor festivals. These boxes typically included multiple vertically aligned high-frequency compression drivers and multiple midranges and low drivers arranged symmetrically around the compression driver. The low-frequency driver is typically 15 or 18 inches in diameter. Mid-format line arrays are typically two or three-way and use 10 or 12 inch low-frequency drivers. The horizontal coverage is typically 90 degrees wide but some systems employ narrower boxes at the top or wider boxes at the bottom of the array. Using a transition frame (which aligns the rigging on dissimilar systems), system engineers may sometimes hang a mid-format box below a large-format box to cover the closest audience members. Speaker boxes from different manufacturers are not mixed because each system has a particular 'voicing' which may be common to a single manufacturer.
Manufacturers typically provide a spreadsheet or custom program to design arrays. Examples include L-Acoustics SOUNDVISION, [15] Adamson Blueprint, [16] Electro-Voice LAPS (Line Array Prediction Software), [17] d&b audiotechnik ArrayCalc, and JBL Vertec Line Array Calculator. [18] Renkus Heinz offers a program called EaseFocus. It is similar to EASE but has only features and calculations specific to Line arrays. EaseFocus has data for a large number of manufacturers allowing comparison of several loudspeaker systems. Other line array brands that use EaseFocus include Bose Professional, Community Professional Loudspeakers, Electro-Voice, QSC, RCF, and VUE Audiotechnik. Meyer Sound offers a different solution by providing an online system called MAPP Online Pro. [19] Nexo offers their 3D modelling software, NS1. EAW offers their own software also, called Resolution.
The design process starts by entering the dimensions of the room and the required sound pressure level. The program then suggests the number and arrangement of boxes. Alternatively, some programs require the number of boxes entered and it will predict the resulting sound pressure levels in different parts of the room.
Once designed, the rigging points are hung from the structure, followed by chain motors (or blocks), flying frame and then the speakers. The individual boxes may be connected one at a time or rigged together on the ground and then pulled up. As the array is lifted, individual box angles are adjusted to match the array prediction program. The top frame may have an inclinometer to confirm the angle of the frame or laser attached which indicates the upper aiming point of the array.
If height or lack of rigging points does not permit flying the speakers, the speakers are typically stacked on the stage or on subwoofers [20] using a custom stacking frame. Stacking of line arrays is common in smaller venues and in temporary installations. Compared to flown speakers, they require less vertical dispersion to cover front to back and the resulting array will have little curvature.
A subwoofer is a loudspeaker designed to reproduce low-pitched audio frequencies, known as bass and sub-bass, that are lower in frequency than those which can be (optimally) generated by a woofer. The typical frequency range that is covered by a subwoofer is about 20–200 Hz for consumer products, below 100 Hz for professional live sound, and below 80 Hz in THX-certified systems. Thus, one or more subwoofers are important for high-quality sound reproduction as they are responsible for the lowest two to three octaves of the ten octaves that are audible. This very low-frequency (VLF) range reproduces the natural fundamental tones of the bass drum, electric bass, double bass, grand piano, contrabassoon, tuba, in addition to thunder, gunshots, explosions, etc.
A loudspeaker is a combination of one or more speaker drivers, an enclosure, and electrical connections. The speaker driver is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound.
A tweeter or treble speaker is a special type of loudspeaker that is designed to produce high audio frequencies, typically up to 100 kHz. The name is derived from the high pitched sounds made by some birds (tweets), especially in contrast to the low woofs made by many dogs, after which low-frequency drivers are named (woofers).
An electrostatic loudspeaker (ESL) is a loudspeaker design in which sound is generated by the force exerted on a membrane suspended in an electrostatic field.
Ambisonics is a full-sphere surround sound format: in addition to the horizontal plane, it covers sound sources above and below the listener.
Directional Sound refers to the notion of using various devices to create fields of sound which spread less than most (small) traditional loudspeakers. Several techniques are available to accomplish this, and each has its benefits and drawbacks. Ultimately, choosing a directional sound device depends greatly on the environment in which it is deployed as well as the content that will be reproduced. Keeping these factors in mind will yield the best results through any evaluation of directional sound technologies.
A sound reinforcement system is the combination of microphones, signal processors, amplifiers, and loudspeakers in enclosures all controlled by a mixing console that makes live or pre-recorded sounds louder and may also distribute those sounds to a larger or more distant audience. In many situations, a sound reinforcement system is also used to enhance or alter the sound of the sources on the stage, typically by using electronic effects, such as reverb, as opposed to simply amplifying the sources unaltered.
A horn loudspeaker is a loudspeaker or loudspeaker element which uses an acoustic horn to increase the overall efficiency of the driving element(s). A common form (right) consists of a compression driver which produces sound waves with a small metal diaphragm vibrated by an electromagnet, attached to a horn, a flaring duct to conduct the sound waves to the open air. Another type is a woofer driver mounted in a loudspeaker enclosure which is divided by internal partitions to form a zigzag flaring duct which functions as a horn; this type is called a folded horn speaker. The horn serves to improve the coupling efficiency between the speaker driver and the air. The horn can be thought of as an "acoustic transformer" that provides impedance matching between the relatively dense diaphragm material and the less-dense air. The result is greater acoustic output power from a given driver.
JBL is an American audio equipment manufacturer headquartered in Los Angeles, California, United States. JBL serves the home and professional market. The professional market includes studios, installed/tour/portable sound, music production, DJ, and cinema markets. The home market includes high-end home amplification/speakers/headphones as well as high-end car audio. JBL is owned by Harman International, itself a subsidiary of Samsung Electronics.
Loudspeaker acoustics is a subfield of acoustical engineering concerned with the design of loudspeakers. It focuses on the reproduction of sound and the parameters involved in doing so in actual equipment.
A loudspeaker enclosure or loudspeaker cabinet is an enclosure in which speaker drivers and associated electronic hardware, such as crossover circuits and, in some cases, power amplifiers, are mounted. Enclosures may range in design from simple, homemade DIY rectangular particleboard boxes to very complex, expensive computer-designed hi-fi cabinets that incorporate composite materials, internal baffles, horns, bass reflex ports and acoustic insulation. Loudspeaker enclosures range in size from small "bookshelf" speaker cabinets with 4-inch (10 cm) woofers and small tweeters designed for listening to music with a hi-fi system in a private home to huge, heavy subwoofer enclosures with multiple 18-inch (46 cm) or even 21-inch (53 cm) speakers in huge enclosures which are designed for use in stadium concert sound reinforcement systems for rock music concerts.
Loudspeaker measurement is the practice of determining the behaviour of loudspeakers by measuring various aspects of performance. This measurement is especially important because loudspeakers, being transducers, have a higher level of distortion than other audio system components used in playback or sound reinforcement.
Studio monitors are loudspeakers in speaker enclosures specifically designed for professional audio production applications, such as recording studios, filmmaking, television studios, radio studios and project or home studios, where accurate audio reproduction is crucial. Among audio engineers, the term monitor implies that the speaker is designed to produce relatively flat (linear) phase and frequency responses. In other words, it exhibits minimal emphasis or de-emphasis of particular frequencies, the loudspeaker gives an accurate reproduction of the tonal qualities of the source audio, and there will be no relative phase shift of particular frequencies—meaning no distortion in sound-stage perspective for stereo recordings. Beyond stereo sound-stage requirements, a linear phase response helps impulse response remain true to source without encountering "smearing". An unqualified reference to a monitor often refers to a near-field design. This is a speaker small enough to sit on a stand or desk in proximity to the listener, so that most of the sound that the listener hears is coming directly from the speaker, rather than reflecting off walls and ceilings. Monitor speakers may include more than one type of driver or, for monitoring low-frequency sounds, such as bass drum, additional subwoofer cabinets may be used.
SpeakerCraft is an American manufacturer of custom-installed audio/video and home theater products based in Petaluma, California. Founded in 1976 by Edward Haase, Ken Humphreys, and Eugene Humphreys, the company evolved from a retail stereo store and original equipment manufacturer to a designer and installer of custom audio systems. Over the years, SpeakerCraft has developed proprietary technologies such as AIM, TIME, WavePlane, and MODE, and has produced more than 1000 products, including architectural speakers, subwoofers, and control systems. The company has experienced significant growth and multiple ownership changes, including its sale to Nortek, Inc. in 2004. SpeakerCraft is recognized for its innovative approach and quality products, despite some criticism regarding cost.
KEF is a British company specialising in the design and production of a range of high-end audio products, including HiFi speakers, subwoofers, architecture speakers, wireless speakers, and headphones. It was founded in Maidstone, Kent, in 1961 by a BBC engineer named Raymond Cooke (1925–1995). In 1992, the Hong Kong–based Gold Peak Group acquired KEF; and GP Acoustics, a member of Gold Peak, now owns the company. KEF continues to develop and manufacture its products in Maidstone.
A parabolic loudspeaker is a loudspeaker which seeks to focus its sound in coherent plane waves either by reflecting sound output from a speaker driver to a parabolic reflector aimed at the target audience, or by arraying drivers on a parabolic surface. The resulting beam of sound travels farther, with less dissipation in air, than horn loudspeakers, and can be more focused than line array loudspeakers allowing sound to be sent to isolated audience targets. The parabolic loudspeaker has been used for such diverse purposes as directing sound at faraway targets in performing arts centers and stadia, for industrial testing, for intimate listening at museum exhibits, and as a sonic weapon.
Acoustic lobing refers to the radiation pattern of a combination of two or more loudspeaker drivers at a certain frequency, as seen looking at the speaker from its side. In most multi-way speakers, it is at the crossover frequency that the effects of lobing are of greatest concern, since this determines how well the speaker preserves the tonality of the original recorded content.
David W. Gunness is an American audio engineer, electrical engineer and inventor. He is known for his work on loudspeaker design, especially high-output professional horn loudspeakers for public address, studio, theater, nightclub, concert and touring uses.
Charles Emory Hughes II is an American inventor and audio engineer. He is known for his work on loudspeaker design, and the measurement of professional audio sound systems. Hughes first worked for Peavey Electronics designing loudspeakers and horns where he was granted a patent for the Quadratic-Throat Waveguide horn used in concert loudspeakers. He worked for Altec Lansing for two years as chief engineer for the pro audio division and was granted two more patents. In 2021, Hughes was hired by Biamp as principal engineer.
A transmission line loudspeaker is a loudspeaker enclosure design which uses the topology of an acoustic transmission line within the cabinet, compared to the simpler enclosures used by sealed (closed) or ported designs. Instead of reverberating in a fairly simple damped enclosure, sound from the back of the bass speaker is directed into a long damped pathway within the speaker enclosure, which allows far greater control and use of speaker energy and the resulting sound.
{{cite web}}
: CS1 maint: unfit URL (link)