Occupation | |
---|---|
Names | Lineworker, powerline worker |
Occupation type | Profession |
Description | |
Education required | Apprenticeship, Industrial Training Institute |
Related jobs | Electrician |
A lineworker (also called a lineman or powerline worker) constructs and maintains the electric transmission and distribution facilities that deliver electrical energy to industrial, commercial, and residential establishments. A lineworker installs, services, and emergency repairs electrical lines in the case of lightning, wind, ice storm, or ground disruptions. [1] Whereas those who install and maintain electrical wiring inside buildings are electricians, lineworkers generally work at outdoor installations.
The occupation had begun in 1844 when the first telegraph wires were strung between Washington, D.C., and Baltimore carrying the famous message of Samuel Morse, "What hath God wrought?" [2] The first telegraph station was built in Chicago in 1848, by 1861 a web of lines spanned the United States and in 1868 the first permanent telegraph cable was successfully laid across the Atlantic Ocean. [2] Telegraph lines could be strung on trees, but wooden poles were quickly adopted as the preferred method. The term lineworker was used for those who set wooden poles and strung wire. The term continued in use with the invention of the telephone in the 1870s and the beginning of electrification in the 1890s.
This new electrical power work was more hazardous than telegraph or telephone work because of the risk of electrocution. Between the 1890s and the 1930s, line work was considered one of the most hazardous jobs. This led to the formation of labor organizations to represent the workers and advocate for their safety. This also led to the establishment of apprenticeship programs and the establishment of more stringent safety standards, starting in the late 1930s. The union movement in the United States was led by lineworker Henry Miller, who in 1890 was elected president of the Electrical Wiremen and Linemen's Union, No. 5221 of the American Federation of Labor. [3]
The rural electrification drive during the New Deal led to a wide expansion in the number of jobs in the electric power industry. Many powerline workers during that period traveled around the country following jobs as they became available in tower construction, substation construction, and wire stringing. They often lived in temporary camps set up near the project they were working on, or in boarding houses if the work was in a town or city, and relocating every few weeks or months. The occupation was lucrative at the time,[ citation needed ] but the hazards and the extensive travel limited its appeal.
A brief drive to electrify some railroads on the East Coast of the US-led to the development of specialization of powerline workers who installed and maintained catenary overhead lines. Growth in this branch of linework declined after most railroads favored diesel over electric engines for replacement of steam engines.
The occupation evolved during the 1940s and 1950s with the expansion of residential electrification. This led to an increase in the number of powerline workers needed to maintain power distribution circuits and provide emergency repairs. Maintenance powerline workers mostly stayed in one place, although sometimes they were called to travel to assist repairs.[ citation needed ] During the 1950s, some electric lines began to be installed in tunnels, expanding the scope of the work.[ citation needed ]
Powerline workers work on electrically energized (live) and de-energized (dead) power lines. They may perform several tasks associated with power lines, including installation or replacement of distribution equipment such as capacitor banks, distribution transformers on poles, insulators and fuses. These duties include the use of ropes, knots, and lifting equipment. These tasks may have to be performed with primitive manual tools where accessibility is limited. Such conditions are common in rural or mountainous areas that are inaccessible to trucks.
High voltage transmission lines can be worked live with proper setups. The lineworker must be isolated from the ground. The lineworker wears special conductive clothing that is connected to the live power line, at which point the line and the lineworker are at the same potential, allowing the lineworker to handle the wire. The lineworker may still be electrocuted if he or she completes an electrical circuit, for example by handling both ends of a broken conductor. Such work is often done by helicopter by specially trained powerline workers. [4] Isolated line work is only used for transmission-level voltages and sometimes for the higher distribution voltages. Live wire work is common on low voltage distribution systems within the UK and Australia as all linesmen are trained to work 'live'. Live wire work on high voltage distribution systems within the UK and Australia is carried out by specialist teams.
Becoming a lineworker usually involves starting as an apprentice and a four-year training program before becoming a "Journey Lineworker". Apprentice powerline workers are trained in all types of work from operating equipment and climbing to proper techniques and safety standards. Schools throughout the United States offer a pre-apprentice lineworker training program such as Southeast Lineman Training Center and Northwest Lineman College.
Lineworkers, especially those who deal with live electrical apparatus, use personal protective equipment (PPE) as protection against inadvertent contact. This includes rubber gloves, rubber sleeves, bucket liners, and protective blankets.
When working with energized power lines, powerline workers must use protection to eliminate any contact with the energized line. The requirements for PPEs and associated permissible voltage depends on applicable regulations in the jurisdiction as well as company policy. Voltages higher than those that can be worked using gloves are worked with special sticks known as hot-line tools or hot sticks, with which power lines can be safely handled from a distance. Powerline workers must also wear special rubber insulating gear when working with live wires to protect against any accidental contact with the wire. The buckets powerline workers sometimes work from are also insulated with fiberglass.
De-energized power lines can be hazardous as they can still be energized from another source such as interconnection or interaction with another circuit even when they appear to be shut off. For example, a higher-voltage distribution level circuit may feed several lower-voltage distribution circuits through transformers. If the higher voltage circuit is de-energized, but if lower-voltage circuits connected remain energized, the higher voltage circuit will remain energized. Another problem can arise when de-energized wires become energized through electrostatic or electromagnetic induction from energized wires nearby.
All live line work PPE must be kept clean from contaminants and regularly tested for di-electric integrity. This is done by the use of high voltage electrical testing equipment.
Other general items of PPE such as helmets are usually replaced at regular intervals.
Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.
In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.
An overhead line or overhead wire is an electrical cable that is used to transmit electrical energy to electric locomotives, electric multiple units, trolleybuses or trams. The generic term used by the International Union of Railways for the technology is overhead line. It is known variously as overhead catenary, overhead contact line (OCL), overhead contact system (OCS), overhead equipment (OHE), overhead line equipment, overhead lines (OHL), overhead wiring (OHW), traction wire, and trolley wire.
Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.
A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.
A third rail, also known as a live rail, electric rail or conductor rail, is a method of providing electric power to a railway locomotive or train, through a semi-continuous rigid conductor placed alongside or between the rails of a railway track. It is used typically in a mass transit or rapid transit system, which has alignments in its own corridors, fully or almost fully segregated from the outside environment. Third-rail systems are usually supplied from direct current electricity.
Railway electrification is the use of electric power for the propulsion of rail transport. Electric railways use either electric locomotives, electric multiple units or both. Electricity is typically generated in large and relatively efficient generating stations, transmitted to the railway network and distributed to the trains. Some electric railways have their own dedicated generating stations and transmission lines, but most purchase power from an electric utility. The railway usually provides its own distribution lines, switches, and transformers.
A transmission tower is a tall structure, usually a lattice tower made of steel that is used to support an overhead power line. In electrical grids, transmission towers carry high-voltage transmission lines that transport bulk electric power from generating stations to electrical substations, from which electricity is delivered to end consumers; moreover, utility poles are used to support lower-voltage sub-transmission and distribution lines that transport electricity from substations to electricity customers.
High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.
Backfeeding is the flow of electric power in the direction reverse to that of the generally understood or typical flow of power. Depending on the source of the power, this reverse flow may be intentional or unintentional. If not prevented or properly performed, backfeeding may present unanticipated hazards to electrical grid equipment and service personnel.
A distribution transformer or service transformer provides a final voltage transformation in the electric power distribution system, stepping down the voltage used in the distribution lines to the level used by the customer. The invention of a practical, efficient transformer made AC power distribution feasible; a system using distribution transformers was demonstrated as early as 1882.
An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors suspended by towers or poles. Since the surrounding air provides good cooling, insulation along long passages, and allows optical inspection, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.
Transposition is the periodic swapping of positions of the conductors of a transmission line, in order to reduce crosstalk and otherwise improve transmission. In telecommunications this applies to balanced pairs whilst in power transmission lines three conductors are periodically transposed.
An arc flash is the light and heat produced as part of an arc fault, a type of electrical explosion or discharge that results from a connection through air to ground or another voltage phase in an electrical system.
In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.
In electrical engineering, earth potential rise (EPR), also called ground potential rise (GPR), occurs when a large current flows to earth through an earth grid impedance. The potential relative to a distant point on the Earth is highest at the point where current enters the ground, and declines with distance from the source. Ground potential rise is a concern in the design of electrical substations because the high potential may be a hazard to people or equipment.
Stray voltage is the occurrence of electrical potential between two objects that ideally should not have any voltage difference between them. Small voltages often exist between two grounded objects in separate locations by the normal current flow in the power system. Contact voltage is a better defined term when large voltage appear as a result of a fault. Contact voltage on the enclosure of electrical equipment can appear from a fault in the electrical power system, such as a failure of insulation.
In the electric power distribution industry, a hot stick is an insulated pole, usually made of fiberglass, used by electric utility workers when engaged on live-line working on energized high-voltage electric power lines, to protect them from electric shock. Depending on the tool attached to the end of the hot stick, it is possible to test for voltage, tighten nuts and bolts, apply tie wires, open and close switches, replace fuses, lay insulating sleeves on wires, and perform various other tasks while not exposing the crew to a large risk of electric shock.
In electrical engineering, live-line working, also known as hotline maintenance, is the maintenance of electrical equipment, often operating at high voltage, while the equipment is energised. Although this is more hazardous for personnel than working on electrical equipment with the power off, live-line maintenance techniques are used in the electric power distribution industry to avoid the disruption and high economic costs of having to turn off power to customers to perform essential periodic maintenance on transmission lines and other equipment.
The New York, New Haven and Hartford Railroad pioneered electrification of main line railroads using high-voltage, alternating current, single-phase overhead catenary. It electrified its mainline between Stamford, Connecticut, and Woodlawn, New York, in 1907 and extended the electrification to New Haven, Connecticut, in 1914. While single-phase AC railroad electrification has become commonplace, the New Haven's system was unprecedented at the time of construction. The significance of this electrification was recognized in 1982 by its designation as a Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers (ASME).