Liquid-impregnated surface

Last updated

A slippery liquid-infused porous surface (SLIPS), liquid-impregnated surface (LIS), or multi-phase surface consists of two distinct layers. The first is a highly textured or porous substrate with features spaced sufficiently close to stably contain the second layer which is an impregnating liquid that fills in the spaces between the features. [1] [2] [3] The liquid must have a surface energy well-matched to the substrate in order to form a stable film. [4] Slippery surfaces are finding applications in commercial products, anti-fouling surfaces, anti-icing and biofilm-resistant medical devices.

Adaptive Surface Technologies [5] and LiquiGlide are commercial examples of liquid-impregnated surfaces, invented at Harvard University [6] [7] and the Massachusetts Institute of Technology. [8]

SLIPS type surfaces have a number of advantages over traditional lotus based superhydrophobic surfaces. The free flowing liquid allows for the creation of a smooth surface with the ability to self-repair. This smooth surface often results in a low sliding angle for both high and low surface tension liquids. Finally, SLIPS surfaces can be made optically transparent unlike many traditional superhydrophobic surfaces that scatter light due to having structure on the same order as visible light.

However, the longevity of SLIPS for prolonged anti-icing applications have been of concern. [9] In this regard, replacing the lubricant in SLIPS with a phase switching liquid (PSL) [10] can yield promising results. PSLs are a class of phase change materials, which are in liquid state under ambient conditions and have a melting point higher than the freezing point of water. Thus the PSL changes into solid phase in a cold environment before water freezing can happen. While PSL impregnated textured surface behave as a traditional SLIPS in ambient conditions, when operated below the melting point of PSL, they resist PSL displacement out of surface texture by water, engendering enhanced icephobicity even on hydrophilic substrates.

See also

Related Research Articles

<span class="mw-page-title-main">Hydrophobe</span> Molecule or surface that has no attraction to water

In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The nanoparticles in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

Electrowetting is the modification of the wetting properties of a surface with an applied electric field.

<span class="mw-page-title-main">Ski wax</span> Material for use on snow runners

Ski wax is a material applied to the bottom of snow runners, including skis, snowboards, and toboggans, to improve their coefficient of friction performance under varying snow conditions. The two main types of wax used on skis are glide waxes and grip waxes. They address kinetic friction—to be minimized with a glide wax—and static friction—to be achieved with a grip wax. Both types of wax are designed to be matched with the varying properties of snow, including crystal type and size, and moisture content of the snow surface, which vary with temperature and the temperature history of the snow. Glide wax is selected to minimize sliding friction for both alpine and cross-country skiing. Grip wax provides on-snow traction for cross-country skiers, as they stride forward using classic technique.

<span class="mw-page-title-main">Efflorescence</span> Migration of a salt to the surface of a porous material

In chemistry, efflorescence is the migration of a salt to the surface of a porous material, where it forms a coating. The essential process involves the dissolving of an internally held salt in water, or occasionally in another solvent. The water, with the salt now held in solution, migrates to the surface, then evaporates, leaving a coating of the salt.

<span class="mw-page-title-main">Wetting</span> Ability of a liquid to maintain contact with a solid surface

Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with the first one. The degree of wetting (wettability) is determined by a force balance between adhesive and cohesive forces.

<span class="mw-page-title-main">Contact angle</span> The angle between a liquid–vapor interface and a solid surface

The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. A given system of solid, liquid, and vapor at a given temperature and pressure has a unique equilibrium contact angle. However, in practice a dynamic phenomenon of contact angle hysteresis is often observed, ranging from the advancing (maximal) contact angle to the receding (minimal) contact angle. The equilibrium contact is within those values, and can be calculated from them. The equilibrium contact angle reflects the relative strength of the liquid, solid, and vapour molecular interaction.

<span class="mw-page-title-main">Waterproofing</span> Process of making an object or structure waterproof or water-resistant

Waterproofing is the process of making an object or structure waterproof or water-resistant so that it remains relatively unaffected by water or resisting the ingress of water under specified conditions. Such items may be used in wet environments or underwater to specified depths.

<span class="mw-page-title-main">Lotus effect</span> Self-cleaning properties

The lotus effect refers to self-cleaning properties that are a result of ultrahydrophobicity as exhibited by the leaves of Nelumbo, the lotus flower. Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface. Ultrahydrophobicity and self-cleaning properties are also found in other plants, such as Tropaeolum (nasturtium), Opuntia, Alchemilla, cane, and also on the wings of certain insects.

<span class="mw-page-title-main">Metal foam</span> Porous material made from a metal

In materials science, a metal foam is a material or structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.

Porous silicon is a form of the chemical element silicon that has introduced nanopores in its microstructure, rendering a large surface to volume ratio in the order of 500 m2/cm3.

<span class="mw-page-title-main">Ultrahydrophobicity</span> Material property of extreme resistance to wetting

In chemistry and materials science, ultrahydrophobic surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing.

<span class="mw-page-title-main">Coffee ring effect</span> Capillary flow effect

In physics, a "coffee ring" is a pattern left by a puddle of particle-laden liquid after it evaporates. The phenomenon is named for the characteristic ring-like deposit along the perimeter of a spill of coffee. It is also commonly seen after spilling red wine. The mechanism behind the formation of these and similar rings is known as the coffee ring effect or in some instances, the coffee stain effect, or simply ring stain.

<span class="mw-page-title-main">Countertop</span>

A countertop, also counter top, counter, benchtop, worktop or kitchen bench, bunker is a raised, firm, flat, and horizontal surface. They are built for work in kitchens or other food preparation areas, bathrooms or lavatories, and workrooms in general. The surface is frequently installed upon and supported by cabinets, positioned at an ergonomic height for the user and the particular task for which it is designed. A countertop may be constructed of various materials with different attributes of functionality, durability and aesthetics, and may have built-in appliances, or accessory items relative to the intended application.

<span class="mw-page-title-main">Ice protection system</span> Aircraft system which prevents the formation of ice on outside surfaces during flight

In aeronautics, ice protection systems keep atmospheric moisture from accumulating on aircraft surfaces, such as wings, propellers, rotor blades, engine intakes, and environmental control intakes. Ice buildup can change the shape of airfoils and flight control surfaces, degrading control and handling characteristics as well as performance. An anti-icing, de-icing, or ice protection system either prevents formation of ice, or enables the aircraft to shed the ice before it becomes dangerous.

<span class="mw-page-title-main">Non-stick surface</span> Coating that prevents sticking

A non-stick surface is engineered to reduce the ability of other materials to stick to it. Non-stick cookware is a common application, where the non-stick coating allows food to brown without sticking to the pan. Non-stick is often used to refer to surfaces coated with polytetrafluoroethylene (PTFE), a well-known brand of which is Teflon. In the twenty-first century, other coatings have been marketed as non-stick, such as anodized aluminium, silica, enameled cast iron, and seasoned cookware.

<span class="mw-page-title-main">Janus particles</span> Type of nanoparticle or microparticle

Janus particles are special types of nanoparticles or microparticles whose surfaces have two or more distinct physical properties. This unique surface of Janus particles allows two different types of chemistry to occur on the same particle. The simplest case of a Janus particle is achieved by dividing the particle into two distinct parts, each of them either made of a different material, or bearing different functional groups. For example, a Janus particle may have one-half of its surface composed of hydrophilic groups and the other half hydrophobic groups, the particles might have two surfaces of different color, fluorescence, or magnetic properties. This gives these particles unique properties related to their asymmetric structure and/or functionalization.

Solvent impregnated resins (SIRs) are commercially available (macro)porous resins impregnated with a solvent/an extractant. In this approach, a liquid extractant is contained within the pores of (adsorption) particles. Usually, the extractant is an organic liquid. Its purpose is to extract one or more dissolved components from a surrounding aqueous environment. The basic principle combines adsorption, chromatography and liquid-liquid extraction.

Organosilicon water repellent:

Self-cleaning surfaces are a class of materials with the inherent ability to remove any debris or bacteria from their surfaces in a variety of ways. The self-cleaning functionality of these surfaces are commonly inspired by natural phenomena observed in lotus leaves, gecko feet, and water striders to name a few. The majority of self-cleaning surfaces can be placed into three categories:

  1. superhydrophobic
  2. superhydrophilic
  3. photocatalytic.

References

  1. "Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics".
  2. "US Patent # US 20130032316 A1". US Patent. USPTO. Retrieved 18 October 2013.
  3. "US Patent # US 20090191374 A1". US Patent. USPTO. Retrieved 10 August 2022.
  4. Aizenberg, Joanna; Grinthal, Alison; Hatton, Benjamin D.; Smythe, Elizabeth J.; Tang, Sindy K. Y.; Kang, Sung Hoon; Wong, Tak-Sing (September 2011). "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity". Nature. 477 (7365): 443–447. Bibcode:2011Natur.477..443W. doi:10.1038/nature10447. ISSN   1476-4687. PMID   21938066. S2CID   4300247.
  5. "Adaptive Surface Technologies". Adaptive Surface Technologies. Retrieved 2022-08-17.
  6. "Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics".
  7. Aizenberg, Joanna; Grinthal, Alison; Hatton, Benjamin D.; Smythe, Elizabeth J.; Tang, Sindy K. Y.; Kang, Sung Hoon; Wong, Tak-Sing (September 2011). "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity". Nature. 477 (7365): 443–447. Bibcode:2011Natur.477..443W. doi:10.1038/nature10447. ISSN   1476-4687. PMID   21938066. S2CID   4300247.
  8. "LiquiGlide website". LiquiGlide Inc. Retrieved 5 November 2013.
  9. Rykaczewski, Konrad; Anand, Sushant; Subramanyam, Srinivas Bengaluru; Varanasi, Kripa K. (2013-04-30). "Mechanism of Frost Formation on Lubricant-Impregnated Surfaces". Langmuir. 29 (17): 5230–5238. doi:10.1021/la400801s. ISSN   0743-7463. PMID   23565857.
  10. Chatterjee, Rukmava; Beysens, Daniel; Anand, Sushant (2019). "Delaying Ice and Frost Formation Using Phase-Switching Liquids". Advanced Materials. 31 (17): 1807812. Bibcode:2019AdM....3107812C. doi: 10.1002/adma.201807812 . ISSN   1521-4095. PMID   30873685.