Artificial radiation belts are radiation belts that have been created by high-altitude nuclear explosions. [1] [2] [3] [4] [5]
Explosion | Location | Date | Yield (approximate) | Altitude (km) | Nation of Origin |
---|---|---|---|---|---|
Hardtack Teak | Johnston Island (Pacific) | 1958-08-01 | 3.8 megatons | 76.8 | United States |
Hardtack Orange | Johnston Island (Pacific) | 1958-08-12 | 3.8 megatons | 43 | United States |
Argus I | South Atlantic | 1958-08-27 | 1-2 kilotons | 200 | United States |
Argus II | South Atlantic | 1958-08-30 | 1-2 kilotons | 256 | United States |
Argus III | South Atlantic | 1958-09-06 | 1-2 kilotons | 539 | United States |
Starfish Prime | Johnston Island (Pacific) | 1962-07-09 | 1.4 megatons | 400 | United States |
K-3 | Kazakhstan | 1962-10-22 | 300 kilotons | 290 | USSR |
K-4 | Kazakhstan | 1962-10-28 | 300 kilotons | 150 | USSR |
K-5 | Kazakhstan | 1962-11-01 | 300 kilotons | 59 | USSR |
The table above only lists those high-altitude nuclear explosions for which a reference exists in the open (unclassified) English-language scientific literature to persistent artificial radiation belts resulting from the explosion.
The Starfish Prime radiation belt had, by far, the greatest intensity and duration of any of the artificial radiation belts. [1]
The Starfish Prime radiation belt damaged the United Kingdom Satellite Ariel 1 and the United States satellites, Traac, Transit 4B, Injun I and Telstar I. It also damaged the Soviet satellite Cosmos V. All of these satellites failed completely within several months of the Starfish detonation. [1]
Telstar I lasted the longest of the satellites damaged by the Starfish Prime radiation, with its complete failure occurring on February 21, 1963. [6]
In Los Alamos Scientific Laboratory report LA-6405, Herman Hoerlin gave the following explanation of the history of the original Argus experiment and of how the nuclear detonations led to the development of artificial radiation belts. [1]
Before the discovery of the natural Van Allen belts in 1958, N. C. Christofilos had suggested in October 1957 that many observable geophysical effects could be produced by a nuclear explosion at high altitude in the upper atmosphere. This suggestion was reduced to practice with the sponsorship of the Advanced Research Project Agency (ARPA) of the Department of Defense and under the overall direction of Herbert York, who was then Chief Scientist of ARPA. It required only four months from the time it was decided to proceed with the tests until the first bomb was exploded. The code name of the project was Argus. Three events took place in the South Atlantic. ... Following these events, artificial belts of trapped radiation were observed.
A general description of trapped radiation is as follows. Charged particles move in spirals around magnetic-field lines. The pitch angle (the angle between the direction of the motion of the particle and direction of the field line) has a low value at the equator and increases while the particle moves down a field line in the direction where the magnetic field strength increases. When the pitch angle becomes 90 degrees, the particle must move in the other direction, up the field lines, until the process repeats itself at the other end. The particle is continuously reflected at the two mirror points — it is trapped in the field. Because of the magnetic field gradient and the centrifugal force acting on particles moving around bend field lines, the particles also drift around the earth, electrons towards the east. Thus, they form a shell around the earth similar in shape to the surface formed by a field line rotated around the magnetic dipole axis.
In 2010, the United States Defense Threat Reduction Agency issued a report that had been written in support of the United States Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack. The report, entitled "Collateral Damage to Satellites from an EMP Attack," discusses in great detail the historical events that caused artificial radiation belts and their effects on many satellites that were then in orbit. The same report also projects the effects of one or more present-day high-altitude nuclear explosions upon the formation of artificial radiation belts and the probable resulting effects on satellites that are currently in orbit. [7]
A nuclear electromagnetic pulse is a burst of electromagnetic radiation created by a nuclear explosion. The resulting rapidly varying electric and magnetic fields may couple with electrical and electronic systems to produce damaging current and voltage surges. The specific characteristics of a particular nuclear EMP event vary according to a number of factors, the most important of which is the altitude of the detonation.
Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others may be temporarily created. The belts are named after James Van Allen, who is often credited with their discovery.
Explorer 4 was an American satellite launched on 26 July 1958. It was instrumented by Dr. James van Allen's group. The Department of Defense's Advanced Research Projects Agency (ARPA) had initially planned two satellites for the purposes of studying the Van Allen radiation belts and the effects of nuclear explosions upon these belts, however Explorer 4 was the only such satellite launched as the other, Explorer 5, suffered launch failure.
Operation Argus was a series of United States low-yield, high-altitude nuclear weapons tests and missile tests secretly conducted from 27 August to 9 September 1958 over the South Atlantic Ocean. The tests were performed by the Defense Nuclear Agency.
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space, around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
The Transit Research and Attitude Control (TRAAC) satellite was launched by the U. S. Navy from Cape Canaveral along with Transit 4B on November 15, 1961.
Starfish Prime was a high-altitude nuclear test conducted by the United States, a joint effort of the Atomic Energy Commission (AEC) and the Defense Atomic Support Agency. It was launched from Johnston Atoll on July 9, 1962, and was the largest nuclear test conducted in outer space, and one of five conducted by the US in space.
The militarisation of space involves the placement and development of weaponry and military technology in outer space. The early exploration of space in the mid-20th century had, in part, a military motivation, as the United States and the Soviet Union used it as an opportunity to demonstrate ballistic-missile technology and other technologies having the potential for military application. Outer space has since been used as an operating location for military spacecraft such as imaging and communications satellites, and some ballistic missiles pass through outer space during their flight. As of 2018, known deployments of weapons stationed in space include only the Almaz space-station armament and pistols such as the TP-82 Cosmonaut survival pistol.
Operation Fishbowl was a series of high-altitude nuclear tests in 1962 that were carried out by the United States as a part of the larger Operation Dominic nuclear test program.
The following is a chronology of discoveries concerning the magnetosphere.
The Christofilos effect, sometimes known as the Argus effect, refers to the entrapment of electrons from nuclear weapons in the Earth's magnetic field. It was first predicted in 1957 by Nicholas Christofilos, who suggested the effect had defensive potential in a nuclear war, with so many beta particles becoming trapped that warheads flying through the region would experience huge electrical currents that would destroy their trigger electronics. The concept that a few friendly warheads could disrupt an enemy attack was so promising that a series of new nuclear tests was rushed into the US schedule before a testing moratorium came into effect in late 1958. These tests demonstrated that the effect was not nearly as strong as predicted, and not enough to damage a warhead. However, the effect is strong enough to be used to black out radar systems and disable satellites.
High-altitude nuclear explosions are the result of nuclear weapons testing within the upper layers of the Earth's atmosphere and in outer space. Several such tests were performed at high altitudes by the United States and the Soviet Union between 1958 and 1962.
Program 437 was the second anti-satellite weapons program of the U.S. military. The US anti-satellite weapons program began development in the early 1960s and was officially discontinued on 1 April 1975. Program 437 was approved for development by U.S. Secretary of Defense Robert McNamara on November 20, 1962, after a series of tests involving high altitude nuclear explosions. The program's facilities were located on Johnston Island, an isolated island in the north central Pacific Ocean.
HARDTACK-Teak was an exoatmospheric high altitude nuclear weapon test performed during Operation Newsreel. It was launched from Johnston Atoll on a Redstone missile. On 1 August 1958, the 3.88 Mt (16.2 PJ) shot detonated at an altitude of 76.8 km.
The Injun program was a series of six satellites designed and built by researchers at the University of Iowa to observe various radiation and magnetic phenomena in the ionosphere and beyond.
An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering.
Nuclear blackout, also known as fireball blackout or radar blackout, is an effect caused by explosions of nuclear weapons that disturbs radio communications and causes radar systems to be blacked out or heavily refracted so they can no longer be used for accurate tracking and guidance. Within the atmosphere, the effect is caused by the large volume of ionized air created by the energy of the explosion, while above the atmosphere it is due to the action of high-energy beta particles released from the decaying bomb debris. At high altitudes, the effect can spread over large areas, hundreds of kilometers. The effect slowly fades as the fireball dissipates.
Explorer 15, also called EPE-C or Energetic Particles Explorer-C, was a NASA satellite launched as part of the Explorer program. Explorer 15 was launched on 27 October 1962, at Cape Canaveral Air Force Station, Florida, United States, with a Thor-Delta A.
Explorer 25, was a NASA magnetically aligned satellite launched simultaneously with Explorer 24 (AD-B) using a Scout X-4 launch vehicle. This was NASA's first dual-satellite launch. The satellite's primary mission was to make measurements of the influx of energetic particles into the atmosphere of Earth and to study atmospheric heating and the increase in scale height which have been correlated with geomagnetic activity. Studies of the natural and artificial trapped Van Allen radiation belts were also conducted. A biaxial fluxgate magnetometer was used to monitor the orientation of the spacecraft with respect to the local magnetic field.
STARAD was a radiation-monitoring satellite used to track the artificial radiation belt created by the Starfish Prime high-altitude nuclear test.