This page lists properties of several commonly used piezoelectric materials.
Piezoelectric materials (PMs) can be broadly classified as either crystalline, ceramic, or polymeric. [1] The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate, and lead titanate. Gallium nitride and zinc oxide can also be regarded as a ceramic due to their relatively wide band gaps. Semiconducting PMs offer features such as compatibility with integrated circuits and semiconductor devices. Inorganic ceramic PMs offer advantages over single crystals, including ease of fabrication into a variety of shapes and sizes not constrained crystallographic directions. Organic polymer PMs, such as PVDF, have low Young's modulus compared to inorganic PMs. Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured into large areas, and cut into a variety of shapes. In addition polymers also exhibit high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, thereby a high voltage sensitivity which is a desirable characteristic along with low acoustic and mechanical impedance useful for medical and underwater applications.
Among PMs, PZT ceramics are popular as they have a high sensitivity, a high g33 value. They are however brittle. Furthermore, they show low Curie temperature, leading to constraints in terms of applications in harsh environmental conditions. However, promising is the integration of ceramic disks into industrial appliances moulded from plastic. This resulted in the development of PZT-polymer composites, and the feasible integration of functional PM composites on large scale, by simple thermal welding or by conforming processes. Several approaches towards lead-free ceramic PM have been reported, such as piezoelectric single crystals (langasite), and ferroelectric ceramics with a perovskite structure and bismuth layer-structured ferroelectrics (BLSF), which have been extensively researched. Also, several ferroelectrics with perovskite-structure (BaTiO3 [BT], (Bi1/2Na1/2) TiO3 [BNT], (Bi1/2K1/2) TiO3 [BKT], KNbO3 [KN], (K, Na) NbO3 [KNN]) have been investigated for their piezoelectric properties.
The following table lists the following properties for piezoelectric materials
Single crystals | ||||||
---|---|---|---|---|---|---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittivity, εr | Electromechanical coupling factor, k | Quality factor |
Hutson 1963 [2] | AlN | d15 = -4.07per | ε33 = 11.4 | |||
d31 = -2 | ||||||
d33 = 5 | ||||||
Cook et al. 1963 [3] | BaTiO3 | d15 = 392 | ε11 = 2920 | k15 = 0.57 | ||
d31 = -34.5 | ε33 = 168 | k31 = 0.315 | ||||
d33 = 85.6 | k33 = 0.56 | |||||
Warner et al. 1967 [4] | LiNbO3 (Au-Au) | <001> | d15 = 68 | ε11 = 84 | ||
d22 = 21 | ε33 = 30 | |||||
d31 = -1 | k31 = 0.02 | |||||
d33 = 6 | kt = 0.17 | |||||
Smith et al. 1971 [5] | LiNbO3 | <001> | d15 = 69.2 | ε11 = 85.2 | ||
d22 = 20.8 | ε33 = 28.2 | |||||
d31 = -0.85 | ||||||
d33 = 6 | ||||||
Yamada et al. 1967 [6] | LiNbO3 (Au-Au) | <001> | d15 = 74 | ε11 = 84.6 | ||
d22 = 21 | ε33 = 28.6 | k22 = 0.32 | ||||
d31 = -0.87 | k31 = 0.023 | |||||
d33 = 16 | k33 = 0.47 | |||||
Yamada et al. 1969 [7] | LiTaO3 | d15 = 26 | ε11 = 53 | |||
d22 = 8.5 | ε33 = 44 | |||||
d31 = -3 | ||||||
d33 = 9.2 | ||||||
Cao et al. 2002 [8] | PMN-PT (33%) | d15 = 146 | ε11 = 1660 | k15 = 0.32 | ||
d31 = -1330 | ε33 = 8200 | k31 = 0.59 | ||||
d33 = 2820 | k33 = 0.94 | |||||
kt = 0.64 | ||||||
Badel et al. 2006 [9] | PMN-25PT | <110> | d31 = -643 | ε33 = 2560 | k31 = -0.73 | 362 |
Kobiakov 1980 [10] | ZnO | d15 = -8.3 | ε11 = 8.67 | k15 = 0.199 | ||
d31 = -5.12 | ε33 = 11.26 | k31 = 0.181 | ||||
d33 = 12.3 | k33 = 0.466 | |||||
Zgonik et al. 1994 [11] | ZnO (pure with lithium dopant) | d15 = -13.3 | kr = 8.2 | |||
d31 = -4.67 | ||||||
d33 = 12.0 | ||||||
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [001] (single domain) | d33 = 90 | |||
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] (single domain) | d33 = 224 | |||
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] neutral (domain size of 100 ľm) | d33 = 235 | ε33 = 1984 | k33 = 54.4 | |
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] neutral (domain size of 60 ľm) | d33 = 241 | ε33 = 1959 | k33 = 55.9 | |
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] (domain size of 22 ľm) | d33 = 256 | ε33 = 2008 | k33 = 64.7 | |
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] neutral (domain size of 15 ľm) | d33 = 274 | ε33 = 2853 | k33 = 66.1 | |
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] neutral (domain size of 14 ľm) | d33 = 289 | ε33 = 1962 | k33 = 66.7 | |
Zgonik et al. 1994 [12] | BaTiO3 single crystals | [111] neutral | d33 = 331 | ε33 = 2679 | k33 = 65.2 | |
[13] | LN crystal | d31 = -4.5 d33 = -0.27 | ||||
Li et al. 2010 [14] | PMNT31 | d33 = 2000 | ε33 = 5100 | k31 = 80 | ||
d31 = -750 | ||||||
Zhang et al. 2002 [15] | PMNT31-A | 1400 | ε33 = 3600 | |||
Zhang et al. 2002 [15] | PMNT31-B | 1500 | ε33 = 4800 | |||
Zhang et al. 2002 [15] | PZNT4.5 | d33 = 2100 | ε33 = 4400 | k31 = 83 | ||
d31 = -900 | ||||||
Zhang et al. 2004 [16] | PZNT8 | d33 = 2500 | ε33 = 6000 | k31 = 89 | ||
d31 = -1300 | ||||||
Zhang et al. 2004 [16] | PZNT12 | d33 = 576 | ε33 = 870 | k31 = 52 | ||
d31 = -217 | ||||||
Yamashita et al. 1997 [17] | PSNT33 | ε33 = 960 | / | |||
Yasuda et al. 2001 [18] | PINT28 | 700 | ε33 = 1500 | / | ||
Guo et al. 2003 [19] | PINT34 | 2000 | ε33 = 5000 | / | ||
Hosono et al. 2003 [20] | PIMNT | 1950 | ε33 = 3630 | / | ||
Zhang et al. 2002 [15] | PYNT40 | d33 = 1200 | ε33 = 2700 | k31 = 76 | ||
d31 = -500 | ||||||
Zhang et al. 2012 [21] | PYNT45 | d33 = 2000 | ε33 = 2000 | k31 = 78 | ||
Zhang et al. 2003 [22] | BSPT57 | d33 = 1200 | ε33 = 3000 | k31 = 77 | ||
d31 = -560 | ||||||
Zhang et al. 2003 [23] | BSPT58 | d33 = 1400 | ε33 = 3200 | k31 = 80 | ||
d31 = -670 | ||||||
Zhang et al. 2004 [16] | BSPT66 | d33 = 440 | ε33 = 820 | k31 = 52 | ||
d31 = -162 | ||||||
Ye et al. 2008 [24] | BSPT57 | d33 = 1150 d31 = -520 | ε33 = 3000 | k31 = 0.52 k33 = 0.91 | ||
Ye et al. 2008 [24] | BSPT66 | d33 = 440 | ε33 = 820 | k31 = 0.52 k33 = 0.88 | ||
d31 = -162 | ||||||
Ye et al. 2008 [24] | PZNT4.5 | d33 = 2000 d31 = -970 | ε33 = 5200 | k31 = 0.50 k33 = 0.91 | ||
Ye et al. 2008 [24] | PZNT8 | d31 = -1455 | ε33 = 7700 | k31 = 0.60 k33 = 0.94 | ||
Ye et al. 2008 [24] | PZNT12 | d33 = 576 d31 = -217 | ε33 = 870 | k31 = 0.52 k33 = 0.86 | ||
Ye et al. 2008 [24] | PMNT33 | d33 = 2820 d31 = -1330 | ε33 = 8200 | k31 = 0.59 k33 = 0.94 | ||
Matsubara et al. 2004 [25] | KCN-modified KNN | d33 = 100 d31 = -180 | ε33 = 220-330 | kp = 33-39 | 1200 | |
Ryu et al. 2007 [26] | KZT modifiedKNN | d33 = 126 | ε33 = 590 | kp = 42 | 58 | |
Matsubara et al. 2005 [27] | KCT modified KNN | d33 = 190 | ε33 = | kp = 42 | 1300 | |
Wang et al. 2007 [28] | Bi2O3 doped KNN | d33 = 127 | ε33 = 1309 | kp = 28.3 | ||
Jiang et al. 2009 [29] | doped KNN-0.005BF | d33 = 257 | ε33 = 361 | kp= 52 | 45 | |
Ceramics | ||||||
---|---|---|---|---|---|---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittivity, εr | Electromechanical coupling factor, k | Quality factor |
Berlincourt et al. 1958 [30] | BaTiO3 | d15 = 270 | ε11 = 1440 | k15 = 0.57 | ||
d31 = -79 | ε33 = 1680 | k31 = 0.49 | ||||
d33 = 191 | k33 = 0.47 | |||||
Tang et al. 2011 [31] | BFO | d33 = 37 | kt = 0.6 | |||
Zhang et al. 1999 [32] | PMN-PT | d31 = -74 | ε33 = 1170 | k31 = -0.312 | 283 | |
[33] | PZT-5A | d31 = -171 | ε33 = 1700 | k31 = 0.34 | ||
d33 = 374 | k33 = 0.7 | |||||
[34] | PZT-5H | d15 = 741 | ε11 = 3130 | k15 = 0.68 | 65 | |
d31 = -274 | ε33 = 3400 | k31 = 0.39 | ||||
d33 = 593 | k33 = 0.75 | |||||
[35] | PZT-5K | d33 = 870 | ε33 = 6200 | k33 = 0.75 | ||
Tanaka et al. 2009 [36] | PZN7%PT | d33 = 2400 | εr = 6500 | k33 = 0.94 kt = 0.55 | ||
Pang et al. 2010 [37] | ANSZ | d33 = 295 | 1.61 | 45.5 | 84 | |
Park et al. 2006 [38] | KNN-BZ | d33 = 400 | 2 | 57.4 | 48 | |
Cho et al. 2007 [39] | KNN-BT | d33 = 225 | 1.06 | 36.0 | ||
Park et al. 2007 [40] | KNN-ST | d33 = 220 | 1.45 | 40.0 | 70 | |
Zhao et al. 2007 [41] | KNN-CT | d33 = 241 | 1.32 | 41.0 | ||
Zhang et al. 2006 [42] | LNKN | d33 = 314 | ~700 | 41.2 | ||
Saito et al. 2004 [43] | KNN-LS | d33 = 270 | 1.38 | 50.0 | ||
Saito et al. 2004 [43] | LF4 | d33 = 300 | 1.57 | |||
Tanaka et al. 2009 [36] | Oriented LF4 | d33 = 416 | 1.57 | 61.0 | ||
Pang et al. 2010 [37] | ANSZ | d33 = 295 | 1.61 | 45.5 | 84 | |
Park et al. 2006 [38] | KNN-BZ | d33 = 400 | 2 | 57.4 | 48 | |
Cho et al. 2007 [44] | KNN-BT | d33 = 225 | 1.06 | 36.0 | ||
Park et al. 2007 [40] | KNN-ST | d33 = 220 | 1.45 | 40.0 | 70 | |
Maurya et al. 2013 [45] | KNN-CT | d33 = 241 | 1.32 | 41.0 | ||
Maurya et al. 2013 [45] | NBT-BT | (001) Textured samples | d33 = 322 | ... | ||
Gao et al. 2008 [46] | NBT-BT-KBT | (001) Textured samples | d33 = 192 | |||
Zou et al. 2016 [47] | NBT-KBT | (001) Textured samples | d33 = 134 | kp= 35 | ||
Saito et al. 2004 [43] | NBT-KBT | (001) Textured samples | d33 = 217 | kp = 61 | ||
Chang et al. 2009 [48] | KNLNTS | (001) Textured samples | d33 = 416 | kp = 64 | ||
Chang et al. 2011 [49] | KNNS | (001) Textured samples | d33 = 208 | kp = 63 | ||
Hussain et al. 2013 [50] | KNLN | (001) Textured samples | d33 = 192 | kp = 60 | ||
Takao et al. 2006 [51] | KNNT | (001) Textured samples | d33 = 390 | kp = 54 | ||
Li et al. 2012 [52] | KNN 1 CuO | (001) Textured samples | d33 = 123 | kp = 54 | ||
Cho et al. 2012 [53] | KNN-CuO | (001) Textured samples | d33 = 133 | kp = 46 | ||
Hao et al. 2012 [54] | NKLNT | (001) Textured samples | d33 = 310 | kp = 43 | ||
Gupta et al. 2014 [55] | KNLN | (001) Textured samples | d33 = 254 | |||
Hao et al. 2012 [54] | KNN | (001) Textured samples | d33 = 180 | kp = 44 | ||
Bai et al. 2016 [56] | BCZT | (001) Textured samples | d33 = 470 | kp = 47 | ||
Ye et al. 2013 [57] | BCZT | (001) Textured samples | d33 = 462 | kp = 49 | ||
Schultheiß et al. 2017 [58] | BCZT-T-H | (001) Textured samples | d33 = 580 | |||
OMORI et al. 1990 [59] | BCT | (001) Textured samples | d33 = 170 | |||
Chan et al. 2008 [60] | Pz34 (doped PbTiO3) | d15 = 43.3 | ε33 = 237 | k31 = 4.6 | 700 | |
d31 = -5.1 | ε33 = 208 | k33 = 39.6 | ||||
d33 = 46 | k15 = 22.8 | |||||
kp = 7.4 | ||||||
Lee et al. 2009 [61] | BNKLBT | d33 = 163 | εr = 766 | k31 = 0.188 | 142 | |
ε33 = 444.3 | kt = 0.524 | |||||
kp = 0.328 | ||||||
Sasaki et al. 1999 [62] | KNLNTS | εr = 1156 | k31 = 0.26 | 80 | ||
ε33 = 746 | kt = 0.32 | |||||
kp = 0.43 | ||||||
Takenaka et al. 1991 [63] | (Bi0.5Na0.5)TiO3 (BNT)-based BNKT | d31 = 46 | εr = 650 | kp = 0.27 | ||
d33 = 150 | k31 = 0.165 | |||||
Tanaka et al. 1960 [64] | (Bi0.5Na0.5)TiO3 (BNT)-based BNBT | d31 = 40 | εr = 580 | k31 = 0.19 | ||
d33 = 12.5 | k33 = 0.55 | |||||
Hutson 1960 [65] | CdS | d15 = -14.35 | ||||
d31 = -3.67 | ||||||
d33 = 10.65 | ||||||
Schofield et al. 1957 [66] | CdS | d31 = -1.53 | ||||
d33 = 2.56 | ||||||
Egerton et al. 1959 [67] | BaCaOTi | d31 = -50 | k15 = 0.19 | 400 | ||
d33 = 150 | k31 = 0.49 | |||||
k33 = 0.325 | ||||||
Ikeda et al. 1961 [68] | Nb2O6Pb | d31 = -11 | kr = 0.07 | 11 | ||
d33 = 80 | k31 = 0.045 | |||||
k33 = 0.042 | ||||||
Ikeda et al. 1962 [69] | C6H17N3O10S | d23 = 84 | k21 = 0.18 | |||
d21 = 22.7 | k22 = 0.18 | |||||
d25 = 22 | k23 = 0.44 | |||||
Brown et al. 1962 [70] | BaTiO3 (95%) BaZrO3 (5%) | k15 = 0.15 | 200 | |||
d31 = -60 | k31 = 0.40 | |||||
d33 = 150 | k33 = 0.28 | |||||
Huston 1960 [65] | BaNb2O6 (60%) Nb2O6Pb (40%) | d31 = -25 | kr = 0.16 | |||
Baxter et al. 1960 [71] | BaNb2O6 (50%) Nb2O6Pb (50%) | d31= -36 | kr = 0.16 | |||
Pullin 1962 [72] | BaTiO3 (97%) CaTiO3 (3%) | d31 = -53 | ε33 = 1390 | k15 = 0.39 | ||
d33 = 135 | k31 = 0.17 | |||||
k33 = 0.43 | ||||||
Berlincourt et al. 1960 [73] | BaTiO3 (95%) CaTiO3 (5%) | d15 = -257 | ε33 = 1355 | k15 = 0.495 | 500 | |
d31 = -58 | k31 = 0.19 | |||||
d33 = 150 | k33 = 0.49 | |||||
kr = 0.3 | ||||||
Berlincourt et al. 1960 [73] | BaTiO3 (96%) PbTiO3 (4%) | d31 = -38 | ε33 = 990 | k15 = 0.34 | ||
d33 = 105 | k31 = 0.14 | |||||
k33 = 0.39 | ||||||
Jaffe et al. 1955 [74] | PbHfO3 (50%) PbTiO3 (50%) | d31 = -54 | kr = 0.38 | |||
Kell 1962 [75] | Nb2O6Pb (80%) BaNb2O6 (20%) | d31 = 25 | kr = 0.20 | 15 | ||
Brown et al. 1962 [70] | Nb2O6Pb (70%) BaNb2O6 (30%) | d31 = -40 | ε33 = 900 | k31 = 0.13 | 350 | |
d33 = 100 | k33 = 0.3 | |||||
kr = 0.24 | ||||||
Berlincourt et al. 1960 [76] | PbTiO3 (52%) PbZrO3 (48%) | d15 = 166 | k15 = 0.40 | 1170 | ||
d31 = -43 | k31 = 0.17 | |||||
d33 = 110 | k33 = 0.43 | |||||
kr = 0.28 | ||||||
Berlincourt et al. 1960 [77] | PbTiO3 (50%) lead Zirconate (50%) | d15 = 166 | k15 = 0.504 | 950 | ||
d31 = -43 | k31 = 0.23 | |||||
d33 = 110 | k33 = 0.546 | |||||
kr = 0.397 | ||||||
Egerton et al. 1959 [67] | KNbO3 (50%) NaNbO3 (50%) | d31 = -32 | 140 | |||
d33 = 80 | k31 = 0.21 | |||||
k33 = 0.51 | ||||||
Brown et al. 1962 [70] | NaNbO3 (80%) Cd2Nb2O7 (20%) | d31 = -80 | ε33 = 2000 | k31 = 0.17 | ||
d33 = 200 | k33 = 0.42 | |||||
kr = 0.30 | ||||||
Schofield et al. 1957 [66] | BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%) | d31 = -60 | ε33 = 1605 | kr = 0.33 | ||
Pullin 1962 [72] | BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) | d31 = -31 | k31 = 0.15 | 1200 | ||
d33 = 79 | k33 = 0.41 | |||||
kr = 0.24 | ||||||
Defaÿ 2011 [78] | AlN (Pt-Mo) | d31 = -2.5 | ||||
Shibata et al. 2011 [79] | KNN(Pt-Pt) | <001> | d31 = -96.3 | εr = 1100 | ||
d33 = 138.2 | ||||||
Sessler 1981 [80] | PVDF | d31 = 17.9 | k31 = 10.3 | |||
d32 = 0.9 | k33 = 12.6 | |||||
d33 = -27.1 | ||||||
Ren et al. 2017 [81] | PVDF | d31 = 23 | εr = 106 | |||
d32 = 2 | ||||||
d33 = -21 | ||||||
Tsubouchi et al. 1981 [82] | Epi AlN/Al2O3 | <001> | d33 = 5.53 | ε33 = 9.5 | kt = 6.5 | 2490 |
Nanomaterials | |||||
---|---|---|---|---|---|
Reference | Material | Structure | Piezoelectric coefficients, d (pC/N) | Characterization method | Size (nm) |
Ke et al. 2008 [83] | NaNbO3 | nanowire | d33 = 0.85-4.26 pm/V | PFM | d = 100 |
Wang et al. 2008 [84] | KNbO3 | nanowire | d33 = 0.9 pm/V | PFM | d = 100 |
Zhang et al. 2004 [85] | PZT | nanowire | PFM | d = 45 | |
Zhao et al. 2004 [86] | ZnO | nanobelt | d33 = 14.3-26.7 pm/V | PFM | w = 360 t = 65 |
Luo et al. 2003 [87] | PZT | nanoshell | d33 = 90 pm/V | PFM | d = 700 t = 90 |
Yun et al. 2002 [88] | BaTiO3 | nanowire | d33 = 0.5 pm/V | PFM | d = 120 |
Lin et al. 2008 [89] | CdS | nanowire | Bending with AFM tip | d = 150 | |
Wang et al. 2007 [90] | PZT | nanofiber | piezoelectric voltage constant~0.079 Vm/N | Bending using a tungsten probe | d = 10 |
Wang et al. 2007 [91] | BaTiO3 | - | d33 = 45 pC/N | Direct tensile test | d ~ 280 |
Jeong et al. 2014 [92] | Alkaline niobate (KNLN) | film | d33 = 310 pC/N | - | |
Park et al. 2010 [93] | BaTiO3 | Thin film | d33 = 190 pC/N | ||
Stoppel et al. 2011 [94] | AlN | Thin film | d33 =5 pC/N | AFM | |
Lee et al. 2017 [95] | WSe2 | 2D nanosheet | d11 = 3.26 pm/V | ||
Zhu et al. 2014 [96] | MoS2 | Free standing layer | e11 = 2900pc/m | AFM | |
Zhong et al. 2017 [97] | PET/EVA/PET | film | d33 = 6300 pC/N | ||
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link){{citation}}
: CS1 maint: DOI inactive as of November 2024 (link)