List of piezoelectric materials

Last updated

This page lists properties of several commonly used piezoelectric materials.

Contents

Piezoelectric materials (PMs) can be broadly classified as either crystalline, ceramic, or polymeric. [1] The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate, and lead titanate. Gallium nitride and zinc oxide can also be regarded as a ceramic due to their relatively wide band gaps. Semiconducting PMs offer features such as compatibility with integrated circuits and semiconductor devices. Inorganic ceramic PMs offer advantages over single crystals, including ease of fabrication into a variety of shapes and sizes not constrained crystallographic directions. Organic polymer PMs, such as PVDF, have low Young's modulus compared to inorganic PMs. Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured into large areas, and cut into a variety of shapes. In addition polymers also exhibit high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, thereby a high voltage sensitivity which is a desirable characteristic along with low acoustic and mechanical impedance useful for medical and underwater applications.

Among PMs, PZT ceramics are popular as they have a high sensitivity, a high g33 value. They are however brittle. Furthermore, they show low Curie temperature, leading to constraints in terms of applications in harsh environmental conditions. However, promising is the integration of ceramic disks into industrial appliances moulded from plastic. This resulted in the development of PZT-polymer composites, and the feasible integration of functional PM composites on large scale, by simple thermal welding or by conforming processes. Several approaches towards lead-free ceramic PM have been reported, such as piezoelectric single crystals (langasite), and ferroelectric ceramics with a perovskite structure and bismuth layer-structured ferroelectrics (BLSF), which have been extensively researched. Also, several ferroelectrics with perovskite-structure (BaTiO3 [BT], (Bi1/2Na1/2) TiO3 [BNT], (Bi1/2K1/2) TiO3 [BKT], KNbO3 [KN], (K, Na) NbO3 [KNN]) have been investigated for their piezoelectric properties.

Key piezoelectric properties

The following table lists the following properties for piezoelectric materials

Table

Single crystals
ReferenceMaterial & heterostructure used for the characterization (electrodes/material, electrode/substrate)OrientationPiezoelectric coefficients, d (pC/N)Relative permittivity, εrElectromechanical coupling factor, kQuality factor
Hutson 1963 [2] AlNd15 = -4.07perε33 = 11.4
d31 = -2
d33 = 5
Cook et al. 1963 [3] BaTiO3d15 = 392ε11 = 2920k15 = 0.57
d31 = -34.5ε33 = 168k31 = 0.315
d33 = 85.6k33 = 0.56
Warner et al. 1967 [4] LiNbO3 (Au-Au)<001>d15 = 68ε11 = 84
d22 = 21ε33 = 30
d31 = -1k31 = 0.02
d33 = 6kt = 0.17
Smith et al. 1971 [5] LiNbO3<001>d15 = 69.2ε11 = 85.2
d22 = 20.8ε33 = 28.2
d31 = -0.85
d33 = 6
Yamada et al. 1967 [6] LiNbO3 (Au-Au)<001>d15 = 74ε11 = 84.6
d22 = 21ε33 = 28.6k22 = 0.32
d31 = -0.87k31 = 0.023
d33 = 16k33 = 0.47
Yamada et al. 1969 [7] LiTaO3d15 = 26ε11 = 53
d22 = 8.5ε33 = 44
d31 = -3
d33 = 9.2
Cao et al. 2002 [8] PMN-PT (33%)d15 = 146ε11 = 1660k15 = 0.32
d31 = -1330ε33 = 8200k31 = 0.59
d33 = 2820k33 = 0.94
kt = 0.64
Badel et al. 2006 [9] PMN-25PT<110>d31 = -643ε33 = 2560k31 = -0.73362
Kobiakov 1980 [10] ZnOd15 = -8.3ε11 = 8.67k15 = 0.199
d31 = -5.12ε33 = 11.26k31 = 0.181
d33 = 12.3k33 = 0.466
Zgonik et al. 1994 [11] ZnO (pure with lithium dopant)d15 = -13.3kr = 8.2
d31 = -4.67
d33 = 12.0
Zgonik et al. 1994 [12] BaTiO3 single crystals[001] (single domain)d33 = 90
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] (single domain)d33 = 224
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] neutral (domain size of 100 ľm)d33 = 235ε33 = 1984k33 = 54.4
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] neutral (domain size of 60 ľm)d33 = 241ε33 = 1959k33 = 55.9
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] (domain size of 22 ľm)d33 = 256ε33 = 2008k33 = 64.7
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] neutral (domain size of 15 ľm)d33 = 274ε33 = 2853k33 = 66.1
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] neutral (domain size of 14 ľm)d33 = 289ε33 = 1962k33 = 66.7
Zgonik et al. 1994 [12] BaTiO3 single crystals[111] neutrald33 = 331ε33 = 2679k33 = 65.2
[13] LN crystald31 = -4.5

d33 = -0.27

Li et al. 2010 [14] PMNT31d33 = 2000ε33 = 5100k31 = 80
d31 = -750
Zhang et al. 2002 [15] PMNT31-A1400ε33 = 3600
Zhang et al. 2002 [15] PMNT31-B1500ε33 = 4800
Zhang et al. 2002 [15] PZNT4.5d33 = 2100ε33 = 4400k31 = 83
d31 = -900
Zhang et al. 2004 [16] PZNT8d33 = 2500ε33 = 6000k31 = 89
d31 = -1300
Zhang et al. 2004 [16] PZNT12d33 = 576ε33 = 870k31 = 52
d31 = -217
Yamashita et al. 1997 [17] PSNT33ε33 = 960/
Yasuda et al. 2001 [18] PINT28700ε33 = 1500/
Guo et al. 2003 [19] PINT342000ε33 = 5000/
Hosono et al. 2003 [20] PIMNT1950ε33 = 3630/
Zhang et al. 2002 [15] PYNT40d33 = 1200ε33 = 2700k31 = 76
d31 = -500
Zhang et al. 2012 [21] PYNT45d33 = 2000ε33 = 2000k31 = 78
Zhang et al. 2003 [22] BSPT57d33 = 1200ε33 = 3000k31 = 77
d31 = -560
Zhang et al. 2003 [23] BSPT58d33 = 1400ε33 = 3200k31 = 80
d31 = -670
Zhang et al. 2004 [16] BSPT66d33 = 440ε33 = 820k31 = 52
d31 = -162
Ye et al. 2008 [24] BSPT57d33 = 1150

d31 = -520

ε33 = 3000k31 = 0.52

k33 = 0.91

Ye et al. 2008 [24] BSPT66d33 = 440ε33 = 820k31 = 0.52

k33 = 0.88

d31 = -162
Ye et al. 2008 [24] PZNT4.5d33 = 2000

d31 = -970

ε33 = 5200k31 = 0.50

k33 = 0.91

Ye et al. 2008 [24] PZNT8d31 = -1455ε33 = 7700k31 = 0.60

k33 = 0.94

Ye et al. 2008 [24] PZNT12d33 = 576

d31 = -217

ε33 = 870k31 = 0.52

k33 = 0.86

Ye et al. 2008 [24] PMNT33d33 = 2820

d31 = -1330

ε33 = 8200k31 = 0.59

k33 = 0.94

Matsubara et al. 2004 [25] KCN-modified KNNd33 = 100

d31 = -180

ε33 = 220-330kp = 33-391200
Ryu et al. 2007 [26] KZT modifiedKNNd33 = 126ε33 = 590kp = 4258
Matsubara et al. 2005 [27] KCT modified KNNd33 = 190ε33 =kp = 421300
Wang et al. 2007 [28] Bi2O3 doped KNNd33 = 127ε33 = 1309kp = 28.3
Jiang et al. 2009 [29] doped KNN-0.005BFd33 = 257ε33 = 361kp= 5245
Ceramics
ReferenceMaterial & heterostructure used for the characterization (electrodes/material, electrode/substrate)OrientationPiezoelectric coefficients, d (pC/N)Relative permittivity, εrElectromechanical coupling factor, kQuality factor
Berlincourt et al. 1958 [30] BaTiO3d15 = 270ε11 = 1440k15 = 0.57
d31 = -79ε33 = 1680k31 = 0.49
d33 = 191k33 = 0.47
Tang et al. 2011 [31] BFOd33 = 37kt = 0.6
Zhang et al. 1999 [32] PMN-PTd31 = -74ε33 = 1170k31 = -0.312283
[33] PZT-5Ad31 = -171ε33 = 1700k31 = 0.34
d33 = 374k33 = 0.7
[34] PZT-5Hd15 = 741ε11 = 3130k15 = 0.6865
d31 = -274ε33 = 3400k31 = 0.39
d33 = 593k33 = 0.75
[35] PZT-5Kd33 = 870ε33 = 6200k33 = 0.75
Tanaka et al. 2009 [36] PZN7%PTd33 = 2400εr = 6500k33 = 0.94

kt = 0.55

Pang et al. 2010 [37] ANSZd33 = 2951.6145.584
Park et al. 2006 [38] KNN-BZd33 = 400257.448
Cho et al. 2007 [39] KNN-BTd33 = 2251.0636.0
Park et al. 2007 [40] KNN-STd33 = 2201.4540.070
Zhao et al. 2007 [41] KNN-CTd33 = 2411.3241.0
Zhang et al. 2006 [42] LNKNd33 = 314~70041.2
Saito et al. 2004 [43] KNN-LSd33 = 2701.3850.0
Saito et al. 2004 [43] LF4d33 = 3001.57
Tanaka et al. 2009 [36] Oriented LF4d33 = 4161.5761.0
Pang et al. 2010 [37] ANSZd33 = 2951.6145.584
Park et al. 2006 [38] KNN-BZd33 = 400257.448
Cho et al. 2007 [44] KNN-BTd33 = 2251.0636.0
Park et al. 2007 [40] KNN-STd33 = 2201.4540.070
Maurya et al. 2013 [45] KNN-CTd33 = 2411.3241.0
Maurya et al. 2013 [45] NBT-BT(001) Textured samplesd33 = 322...
Gao et al. 2008 [46] NBT-BT-KBT(001) Textured samplesd33 = 192
Zou et al. 2016 [47] NBT-KBT(001) Textured samplesd33 = 134kp= 35
Saito et al. 2004 [43] NBT-KBT(001) Textured samplesd33 = 217kp = 61
Chang et al. 2009 [48] KNLNTS(001) Textured samplesd33 = 416kp = 64
Chang et al. 2011 [49] KNNS(001) Textured samplesd33 = 208kp = 63
Hussain et al. 2013 [50] KNLN(001) Textured samplesd33 = 192kp = 60
Takao et al. 2006 [51] KNNT(001) Textured samplesd33 = 390kp = 54
Li et al. 2012 [52] KNN 1 CuO(001) Textured samplesd33 = 123kp = 54
Cho et al. 2012 [53] KNN-CuO(001) Textured samplesd33 = 133kp = 46
Hao et al. 2012 [54] NKLNT(001) Textured samplesd33 = 310kp = 43
Gupta et al. 2014 [55] KNLN(001) Textured samplesd33 = 254
Hao et al. 2012 [54] KNN(001) Textured samplesd33 = 180kp = 44
Bai et al. 2016 [56] BCZT(001) Textured samplesd33 = 470kp = 47
Ye et al. 2013 [57] BCZT(001) Textured samplesd33 = 462kp = 49
Schultheiß et al. 2017 [58] BCZT-T-H(001) Textured samplesd33 = 580
OMORI et al. 1990 [59] BCT(001) Textured samplesd33 = 170
Chan et al. 2008 [60] Pz34 (doped PbTiO3)d15 = 43.3ε33 = 237k31 = 4.6700
d31 = -5.1ε33 = 208k33 = 39.6
d33 = 46k15 = 22.8
kp = 7.4
Lee et al. 2009 [61] BNKLBTd33 = 163εr = 766k31 = 0.188142
ε33 = 444.3kt = 0.524
kp = 0.328
Sasaki et al. 1999 [62] KNLNTSεr = 1156k31 = 0.2680
ε33 = 746kt = 0.32
kp = 0.43
Takenaka et al. 1991 [63] (Bi0.5Na0.5)TiO3 (BNT)-based BNKTd31 = 46εr = 650kp = 0.27
d33 = 150k31 = 0.165
Tanaka et al. 1960 [64] (Bi0.5Na0.5)TiO3 (BNT)-based BNBTd31 = 40εr = 580k31 = 0.19
d33 = 12.5k33 = 0.55
Hutson 1960 [65] CdSd15 = -14.35
d31 = -3.67
d33 = 10.65
Schofield et al. 1957 [66] CdSd31 = -1.53
d33 = 2.56
Egerton et al. 1959 [67] BaCaOTid31 = -50k15 = 0.19400
d33 = 150k31 = 0.49
k33 = 0.325
Ikeda et al. 1961 [68] Nb2O6Pbd31 = -11kr = 0.0711
d33 = 80k31 = 0.045
k33 = 0.042
Ikeda et al. 1962 [69] C6H17N3O10Sd23 = 84k21 = 0.18
d21 = 22.7k22 = 0.18
d25 = 22k23 = 0.44
Brown et al. 1962 [70] BaTiO3 (95%) BaZrO3 (5%)k15 = 0.15200
d31 = -60k31 = 0.40
d33 = 150k33 = 0.28
Huston 1960 [65] BaNb2O6 (60%) Nb2O6Pb (40%)d31 = -25kr = 0.16
Baxter et al. 1960 [71] BaNb2O6 (50%) Nb2O6Pb (50%)d31= -36kr = 0.16
Pullin 1962 [72] BaTiO3 (97%) CaTiO3 (3%)d31 = -53ε33 = 1390k15 = 0.39
d33 = 135k31 = 0.17
k33 = 0.43
Berlincourt et al. 1960 [73] BaTiO3 (95%) CaTiO3 (5%)d15 = -257ε33 = 1355k15 = 0.495500
d31 = -58k31 = 0.19
d33 = 150k33 = 0.49
kr = 0.3
Berlincourt et al. 1960 [73] BaTiO3 (96%) PbTiO3 (4%)d31 = -38ε33 = 990k15 = 0.34
d33 = 105k31 = 0.14
k33 = 0.39
Jaffe et al. 1955 [74] PbHfO3 (50%) PbTiO3 (50%)d31 = -54kr = 0.38
Kell 1962 [75] Nb2O6Pb (80%) BaNb2O6 (20%)d31 = 25kr = 0.2015
Brown et al. 1962 [70] Nb2O6Pb (70%) BaNb2O6 (30%)d31 = -40ε33 = 900k31 = 0.13350
d33 = 100k33 = 0.3
kr = 0.24
Berlincourt et al. 1960 [76] PbTiO3 (52%) PbZrO3 (48%)d15 = 166k15 = 0.401170
d31 = -43k31 = 0.17
d33 = 110k33 = 0.43
kr = 0.28
Berlincourt et al. 1960 [77] PbTiO3 (50%) lead Zirconate (50%)d15 = 166k15 = 0.504950
d31 = -43k31 = 0.23
d33 = 110k33 = 0.546
kr = 0.397
Egerton et al. 1959 [67] KNbO3 (50%) NaNbO3 (50%)d31 = -32140
d33 = 80k31 = 0.21
k33 = 0.51
Brown et al. 1962 [70] NaNbO3 (80%) Cd2Nb2O7 (20%)d31 = -80ε33 = 2000k31 = 0.17
d33 = 200k33 = 0.42
kr = 0.30
Schofield et al. 1957 [66] BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%)d31 = -60ε33 = 1605kr = 0.33
Pullin 1962 [72] BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%)d31 = -31k31 = 0.151200
d33 = 79k33 = 0.41
kr = 0.24
Defaÿ 2011 [78] AlN (Pt-Mo)d31 = -2.5
Shibata et al. 2011 [79] KNN(Pt-Pt)<001>d31 = -96.3εr = 1100
d33 = 138.2
Sessler 1981 [80] PVDFd31 = 17.9k31 = 10.3
d32 = 0.9k33 = 12.6
d33 = -27.1
Ren et al. 2017 [81] PVDFd31 = 23εr = 106
d32 = 2
d33 = -21
Tsubouchi et al. 1981 [82] Epi AlN/Al2O3<001>d33 = 5.53ε33 = 9.5kt = 6.52490
Nanomaterials
ReferenceMaterialStructurePiezoelectric coefficients, d (pC/N)Characterization methodSize (nm)
Ke et al. 2008 [83] NaNbO3nanowired33 = 0.85-4.26 pm/VPFMd = 100
Wang et al. 2008 [84] KNbO3nanowired33 = 0.9 pm/VPFMd = 100
Zhang et al. 2004 [85] PZTnanowirePFMd = 45
Zhao et al. 2004 [86] ZnOnanobeltd33 = 14.3-26.7 pm/VPFMw = 360 t = 65
Luo et al. 2003 [87] PZTnanoshelld33 = 90 pm/VPFMd = 700 t = 90
Yun et al. 2002 [88] BaTiO3nanowired33 = 0.5 pm/VPFMd = 120
Lin et al. 2008 [89] CdSnanowireBending with AFM tipd = 150
Wang et al. 2007 [90] PZTnanofiberpiezoelectric voltage constant~0.079 Vm/NBending using a tungsten probed = 10
Wang et al. 2007 [91] BaTiO3-d33 = 45 pC/NDirect tensile testd ~ 280
Jeong et al. 2014 [92] Alkaline niobate (KNLN)filmd33 = 310 pC/N-
Park et al. 2010 [93] BaTiO3Thin filmd33 = 190 pC/N
Stoppel et al. 2011 [94] AlNThin filmd33 =5 pC/NAFM
Lee et al. 2017 [95] WSe22D nanosheetd11 = 3.26 pm/V
Zhu et al. 2014 [96] MoS2Free standing layere11 = 2900pc/mAFM
Zhong et al. 2017 [97] PET/EVA/PETfilmd33 = 6300 pC/N

Related Research Articles

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press' and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by American physicist Joseph Valasek. Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics.

<span class="mw-page-title-main">Lead zirconate titanate</span> Chemical compound

Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula Pb[ZrxTi1−x]O3(0 ≤ x ≤ 1).. It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the compound changes shape when an electric field is applied. It is used in a number of practical applications such as ultrasonic transducers and piezoelectric resonators. It is a white to off-white solid.

In electromagnetism, electrostriction is a property of all electrical non-conductor or dielectrics. Electrostriction causes these materials to change their shape under the application of an electric field. It is the dual property to magnetostriction.

Electroceramics are a class of ceramic materials used primarily for their electrical properties.

<span class="mw-page-title-main">Barium titanate</span> Chemical compound

Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. It is the barium salt of metatitanic acid. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics.

<span class="mw-page-title-main">Lithium niobate</span> Chemical compound

Lithium niobate is a synthetic salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linear and non-linear optical applications. Lithium niobate is sometimes referred to by the brand name linobate.

<span class="mw-page-title-main">Isamu Akasaki</span> Japanese engineer (1929–2021)

Isamu Akasaki was a Japanese engineer and physicist, specializing in the field of semiconductor technology and Nobel Prize laureate, best known for inventing the bright gallium nitride (GaN) p-n junction blue LED in 1989 and subsequently the high-brightness GaN blue LED as well.

The Burns temperature, Td, is the temperature where a ferroelectric material, previously in paraelectric state, starts to present randomly polarized nanoregions, that are polar precursor clusters. This behaviour is typical of several, but not all, ferroelectric materials, and was observed in lead titanate (PbTiO3), potassium niobate (KNbO3), lead lanthanum zirconate titanate (PLZT), lead magnesium niobate (PMN), lead zinc niobate (PZN), K2Sr4(NbO3)10, and strontium barium niobate (SBN), Na1/2Bi1/2O3 (NBT).

<span class="mw-page-title-main">Ferroelectric polymer</span> Group of crystalline polar polymers that are also ferroelectric

Ferroelectric polymers are a group of crystalline polar polymers that are also ferroelectric, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external electric field.

<span class="mw-page-title-main">Lead titanate</span> Chemical compound

Lead(II) titanate is an inorganic compound with the chemical formula PbTiO3. It is the lead salt of titanic acid. Lead(II) titanate is a yellow powder that is insoluble in water.

<span class="mw-page-title-main">Strontium barium niobate</span> Chemical compound

Strontium barium niobate is the chemical compound SrxBa1−xNb2O6 for 0.32≤x≤0.82.

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. As of 2015, although they have been studied for over fifty years, the mechanism for this effect is still not completely understood, and is the subject of continuing research.

Sodium bismuth titanate or bismuth sodium titanium oxide (NBT or BNT) is a solid inorganic compound of sodium, bismuth, titanium and oxygen with the chemical formula of Na0.5Bi0.5TiO3 or Bi0.5Na0.5TiO3. This compound adopts the perovskite structure.

A polar metal, metallic ferroelectric, or ferroelectric metal is a metal that contains an electric dipole moment. Its components have an ordered electric dipole. Such metals should be unexpected, because the charge should conduct by way of the free electrons in the metal and neutralize the polarized charge. However they do exist. Probably the first report of a polar metal was in single crystals of the cuprate superconductors YBa2Cu3O7−δ. A polarization was observed along one (001) axis by pyroelectric effect measurements, and the sign of the polarization was shown to be reversible, while its magnitude could be increased by poling with an electric field. The polarization was found to disappear in the superconducting state. The lattice distortions responsible were considered to be a result of oxygen ion displacements induced by doped charges that break inversion symmetry. The effect was utilized for fabrication of pyroelectric detectors for space applications, having the advantage of large pyroelectric coefficient and low intrinsic resistance. Another substance family that can produce a polar metal is the nickelate perovskites. One example interpreted to show polar metallic behavior is lanthanum nickelate, LaNiO3. A thin film of LaNiO3 grown on the (111) crystal face of lanthanum aluminate, (LaAlO3) was interpreted to be both conductor and a polar material at room temperature. The resistivity of this system, however, shows an upturn with decreasing temperature, hence does not strictly adhere to the definition of a metal. Also, when grown 3 or 4 unit cells thick (1-2 nm) on the (100) crystal face of LaAlO3, the LaNiO3 can be a polar insulator or polar metal depending on the atomic termination of the surface. Lithium osmate, LiOsO3 also undergoes a ferrorelectric transition when it is cooled below 140K. The point group changes from R3c to R3c losing its centrosymmetry. At room temperature and below, lithium osmate is an electric conductor, in single crystal, polycrystalline or powder forms, and the ferroelectric form only appears below 140K. Above 140K the material behaves like a normal metal. Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator has been realized in LaAlO3/Ba0.8Sr0.2TiO3/SrTiO3 complex oxide heterostructures.

<span class="mw-page-title-main">Kenji Uchino</span> American electronics engineer

Kenji Uchino is an American electronics engineer, physicist, academic, inventor and industry executive. He is currently an academy professor of Electrical Engineering, Emeritus Academy Institute at Pennsylvania State University, where he also directs the International Center for Actuators and Transducers at Materials Research Institute. He is the former associate director at The US Office of Naval Research – Global Tokyo Office.

Lead magnesium niobate is a relaxor ferroelectric. It has been used to make piezoelectric microcantilever sensors.

Jürgen Rödel is a German materials scientist and professor of non-metallic inorganic materials at the Technische Universität Darmstadt.

<span class="mw-page-title-main">Dragan Damjanovic</span> Swiss-Bosnian-Herzegovinian materials scientist

Dragan Damjanovic is a Swiss-Bosnian-Herzegovinian materials scientist. From 2008 to 2022, he was a professor of material sciences at EPFL and head of the Group for Ferroelectrics and Functional Oxides.

Nickel niobate is a complex oxide which as a solid material has found potential applications in catalysis and lithium batteries.

References

  1. Liu, Huicong; Zhong, Junwen; Lee, Chengkuo; Lee, Seung-Wuk; Lin, Liwei (December 2018). "A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications". Applied Physics Reviews. 5 (4): 041306. Bibcode:2018ApPRv...5d1306L. doi:10.1063/1.5074184. ISSN   1931-9401. S2CID   117451095.
  2. Hutson, Andrew R. "Piezoelectric devices utilizing aluminum nitride." U.S. Patent 3,090,876, issued May 21, 1963.
  3. Cook, W. R.; Berlincourt, D. A.; Scholz, F. J. (May 1963). "Thermal Expansion and Pyroelectricity in Lead Titanate Zirconate and Barium Titanate". Journal of Applied Physics. 34 (5): 1392–1398. Bibcode:1963JAP....34.1392C. doi:10.1063/1.1729587. ISSN   0021-8979.
  4. Warner, A. W.; Onoe, M.; Coquin, G. A. (December 1967). "Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m)". The Journal of the Acoustical Society of America. 42 (6): 1223–1231. Bibcode:1967ASAJ...42.1223W. doi:10.1121/1.1910709. ISSN   0001-4966.
  5. Smith, R. T.; Welsh, F. S. (May 1971). "Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate". Journal of Applied Physics. 42 (6): 2219–2230. Bibcode:1971JAP....42.2219S. doi:10.1063/1.1660528. ISSN   0021-8979.
  6. Yamada, Tomoaki; Niizeki, Nobukazu; Toyoda, Hiroo (February 1967). "Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals". Japanese Journal of Applied Physics. 6 (2): 151–155. Bibcode:1967JaJAP...6..151Y. doi:10.1143/jjap.6.151. ISSN   0021-4922. S2CID   122641950.
  7. Yamada, Tomoaki; Iwasaki, Hiroshi; Niizeki, Nobukazu (September 1969). "Piezoelectric and Elastic Properties of LiTaO3: Temperature Characteristics". Japanese Journal of Applied Physics. 8 (9): 1127–1132. Bibcode:1969JaJAP...8.1127Y. doi: 10.1143/jjap.8.1127 . ISSN   0021-4922. S2CID   120188917.
  8. Cao, Hu; Luo, Haosu (January 2002). "Elastic, Piezoelectric and Dielectric Properties of Pb(Mg 1/3 Nb 2/3 )O 3 -38%PbTiO 3 Single Crystal". Ferroelectrics. 274 (1): 309–315. Bibcode:2002Fer...274..309C. doi:10.1080/00150190213965. ISSN   0015-0193. S2CID   122744640.
  9. Badel, A.; Benayad, A.; Lefeuvre, E.; Lebrun, L.; Richard, C.; Guyomar, D. (April 2006). "Single crystals and nonlinear process for outstanding vibration-powered electrical generators". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 53 (4): 673–684. doi:10.1109/TUFFC.2006.1621494. ISSN   0885-3010. PMID   16615571.
  10. Kobiakov, I.B. (July 1980). "Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures". Solid State Communications. 35 (3): 305–310. Bibcode:1980SSCom..35..305K. doi:10.1016/0038-1098(80)90502-5. ISSN   0038-1098.
  11. Zgonik, M.; Bernasconi, P.; Duelli, M.; Schlesser, R.; Günter, P.; Garrett, M. H.; Rytz, D.; Zhu, Y.; Wu, X. (September 1994). "Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals". Physical Review B. 50 (9): 5941–5949. Bibcode:1994PhRvB..50.5941Z. doi:10.1103/physrevb.50.5941. ISSN   0163-1829. PMID   9976963.
  12. 1 2 3 4 5 6 7 8 Zgonik, M.; Bernasconi, P.; Duelli, M.; Schlesser, R.; Günter, P.; Garrett, M. H.; Rytz, D.; Zhu, Y.; Wu, X. (September 1994). "Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals". Physical Review B. 50 (9): 5941–5949. Bibcode:1994PhRvB..50.5941Z. doi:10.1103/physrevb.50.5941. ISSN   0163-1829. PMID   9976963.
  13. "LiNbO3 Properties". unitedcrystals.com. Retrieved 2020-01-26.
  14. Li, Fei; Zhang, Shujun; Xu, Zhuo; Wei, Xiaoyong; Luo, Jun; Shrout, Thomas R. (2010-04-15). "Investigation of Electromechanical Properties and Related Temperature Characteristics in Domain-Engineered Tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Crystals". Journal of the American Ceramic Society. 93 (9): 2731–2734. doi:10.1111/j.1551-2916.2010.03760.x. ISSN   0002-7820.
  15. 1 2 3 4 Zhang, Shujun; Laurent, Lebrun; Rhee, Sorah; Randall, Clive A.; Shrout, Thomas R. (2002-07-29). "Shear-mode piezoelectric properties of Pb(Yb1/2Nb1/2)O3–PbTiO3 single crystals". Applied Physics Letters. 81 (5): 892–894. Bibcode:2002ApPhL..81..892Z. doi:10.1063/1.1497435. ISSN   0003-6951.
  16. 1 2 3 Zhang, Shujun; Randall, Clive A.; Shrout, Thomas R. (July 2004). "Dielectric, piezoelectric and elastic properties of tetragonal BiScO3-PbTiO3 single crystal with single domain". Solid State Communications. 131 (1): 41–45. Bibcode:2004SSCom.131...41Z. doi:10.1016/j.ssc.2004.04.016. ISSN   0038-1098.
  17. Yamashita, Yohachi; Harada, Kouichi (1997-09-30). "Crystal Growth and Electrical Properties of Lead Scandium Niobate-Lead Titanate Binary Single Crystals". Japanese Journal of Applied Physics. 36 (Part 1, No. 9B): 6039–6042. Bibcode:1997JaJAP..36.6039Y. doi:10.1143/jjap.36.6039. ISSN   0021-4922. S2CID   250802280.
  18. Yasuda, N; Ohwa, H; Kume, M; Hayashi, K; Hosono, Y; Yamashita, Y (July 2001). "Crystal growth and electrical properties of lead indium niobate–lead titanate binary single crystal". Journal of Crystal Growth. 229 (1–4): 299–304. Bibcode:2001JCrGr.229..299Y. doi:10.1016/s0022-0248(01)01161-7. ISSN   0022-0248.
  19. Guo, Yiping; Luo, Haosu; He, Tianhou; Pan, Xiaoming; Yin, Zhiwen (April 2003). "Electric-field-induced strain and piezoelectric properties of a high Curie temperature Pb(In1/2Nb1/2)O3–PbTiO3 single crystal". Materials Research Bulletin. 38 (5): 857–864. doi:10.1016/s0025-5408(03)00043-6. ISSN   0025-5408.
  20. Hosono, Yasuharu; Yamashita, Yohachi; Sakamoto, Hideya; Ichinose, Noboru (2003-09-30). "Crystal Growth of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3and Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Piezoelectric Single Crystals Using the Solution Bridgman Method". Japanese Journal of Applied Physics. 42 (Part 1, No. 9B): 6062–6067. Bibcode:2003JaJAP..42.6062H. doi: 10.1143/jjap.42.6062 . ISSN   0021-4922. S2CID   120150824.
  21. Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R. (2012-04-25), "High Curie Temperature, High Performance Perovskite Single Crystals in the Pb(Yb1/2 Nb1/2 )O3 -PbTiO3 and BiScO3 -PbTiO3 Systems", Ceramic Transactions Series, John Wiley & Sons, Inc., pp. 85–93, doi:10.1002/9781118380802.ch7, ISBN   978-1-118-38080-2
  22. Zhang, Shujun; Randall, Clive A.; Shrout, Thomas R. (2003-10-13). "High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system". Applied Physics Letters. 83 (15): 3150–3152. Bibcode:2003ApPhL..83.3150Z. doi:10.1063/1.1619207. ISSN   0003-6951.
  23. Zhang, Shujun; Randall, Clive A.; Shrout, Thomas R. (October 2003). "Electromechanical Properties in Rhombohedral BiScO3-PbTiO3Single Crystals as a Function of Temperature". Japanese Journal of Applied Physics. 42 (Part 2, No. 10A): L1152–L1154. Bibcode:2003JaJAP..42L1152Z. doi: 10.1143/jjap.42.l1152 . ISSN   0021-4922. S2CID   120306552.
  24. 1 2 3 4 5 6 Ye, Zuo-Guang; Ye, Zuo-Guang, eds. (April 2008). Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. CRC Press. doi:10.1201/9781439832882 (inactive 2024-11-11). ISBN   978-1-4200-7085-9.{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
  25. Matsubara, Masato; Yamaguchi, Toshiaki; Kikuta, Koichi; Hirano, Shin-ichi (2004-10-08). "Sinterability and Piezoelectric Properties of (K,Na)NbO3Ceramics with Novel Sintering Aid". Japanese Journal of Applied Physics. 43 (10): 7159–7163. Bibcode:2004JaJAP..43.7159M. doi:10.1143/jjap.43.7159. ISSN   0021-4922. S2CID   93156866.
  26. Ryu, Jungho; Choi, Jong-jin; Hahn, Byung-dong; Park, Dong-soo; Yoon, Woon-ha; Kim, Kun-young (December 2007). "Sintering and piezoelectric properties of KNN ceramics doped with KZT". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 54 (12): 2510–2515. doi:10.1109/tuffc.2007.569. ISSN   0885-3010. PMID   18276547. S2CID   1947693.
  27. Matsubara, Masato; Yamaguchi, Toshiaki; Kikuta, Koichi; Hirano, Shin-ichi (2005-01-11). "Sintering and Piezoelectric Properties of Potassium Sodium Niobate Ceramics with Newly Developed Sintering Aid". Japanese Journal of Applied Physics. 44 (1A): 258–263. Bibcode:2005JaJAP..44..258M. doi:10.1143/jjap.44.258. ISSN   0021-4922. S2CID   121788834.
  28. Wang, Ying; Li, Yongxiang; Kalantar-zadeh, K.; Wang, Tianbao; Wang, Dong; Yin, Qingrui (2007-09-13). "Effect of Bi3+ ion on piezoelectric properties of K x Na1−x NbO3". Journal of Electroceramics. 21 (1–4): 629–632. doi:10.1007/s10832-007-9246-8. ISSN   1385-3449. S2CID   136916970.
  29. Jiang, Minhong; Liu, Xinyu; Chen, Guohua; Zhou, Changrong (June 2009). "Dielectric and piezoelectric properties of LiSbO3 doped 0.995 K0.5Na0.5NbO3–0.005BiFeO3 piezoelectric ceramics". Materials Letters. 63 (15): 1262–1265. doi:10.1016/j.matlet.2009.02.066. ISSN   0167-577X.
  30. Berlincourt, Don; Jaffe, Hans (1958-07-01). "Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate". Physical Review. 111 (1): 143–148. Bibcode:1958PhRv..111..143B. doi:10.1103/physrev.111.143. ISSN   0031-899X.
  31. Tang, Xianwu; Dai, Jianming; Zhu, Xuebin; Lin, Jianchao; Chang, Qing; Wu, Dajun; Song, Wenhai; Sun, Yuping (2011-11-04). "Thickness-Dependent Dielectric, Ferroelectric, and Magnetodielectric Properties of BiFeO3 Thin Films Derived by Chemical Solution Deposition". Journal of the American Ceramic Society. 95 (2): 538–544. doi:10.1111/j.1551-2916.2011.04920.x. ISSN   0002-7820.
  32. Zhang, Q.M.; Jianzhong Zhao (November 1999). "Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 46 (6): 1518–1526. doi:10.1109/58.808876. ISSN   0885-3010. PMID   18244349. S2CID   22968703.
  33. "Future of Ferroelectric Devices", Ferroelectric Devices 2nd Edition, CRC Press, 2009-11-04, pp. 297–338, doi:10.1201/b15852-12 (inactive 2024-11-11), ISBN   978-1-4398-0375-2 {{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  34. "Your Partner in Smart Solutions". CTS. Retrieved 2020-01-26.
  35. Morgan Electroceramics Co., Ltd (http://www.morganelectroceramics.com )
  36. 1 2 Tanaka, Daisuke; Tsukada, Takeo; Furukawa, Masahito; Wada, Satoshi; Kuroiwa, Yoshihiro (2009-09-24). "Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics". Japanese Journal of Applied Physics. 48 (9): 09KD08. Bibcode:2009JaJAP..48iKD08T. doi:10.1143/jjap.48.09kd08. ISSN   0021-4922. S2CID   120110825.
  37. 1 2 Pang, Xuming; Qiu, Jinhao; Zhu, Kongjun (2010-10-07). "Morphotropic Phase Boundary of Sodium-Potassium Niobate Lead-Free Piezoelectric Ceramics". Journal of the American Ceramic Society. 94 (3): 796–801. doi:10.1111/j.1551-2916.2010.04143.x. ISSN   0002-7820.
  38. 1 2 Park, Hwi-Yeol; Ahn, Cheol-Woo; Song, Hyun-Cheol; Lee, Jong-Heun; Nahm, Sahn; Uchino, Kenji; Lee, Hyeung-Gyu; Lee, Hwack-Joo (2006-08-07). "Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics". Applied Physics Letters. 89 (6): 062906. Bibcode:2006ApPhL..89f2906P. doi:10.1063/1.2335816. ISSN   0003-6951.
  39. Cho, Kyung-Hoon; Park, Hwi-Yeol; Ahn, Cheol-Woo; Nahm, Sahn; Uchino, Kenji; Park, Seung-Ho; Lee, Hyeung-Gyu; Lee, Hwack-Joo (June 2007). "Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3?0.05SrTiO3Ceramics". Journal of the American Ceramic Society. 90 (6): 1946–1949. doi:10.1111/j.1551-2916.2007.01715.x. ISSN   0002-7820.
  40. 1 2 Park, Hwi-Yeol; Cho, Kyung-Hoon; Paik, Dong-Soo; Nahm, Sahn; Lee, Hyeung-Gyu; Kim, Duk-Hee (2007-12-15). "Microstructure and piezoelectric properties of lead-free (1−x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics". Journal of Applied Physics. 102 (12): 124101–124101–5. Bibcode:2007JAP...102l4101P. doi:10.1063/1.2822334. ISSN   0021-8979.
  41. Zhao, Pei; Zhang, Bo-Ping; Li, Jing-Feng (2007-06-11). "High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature". Applied Physics Letters. 90 (24): 242909. Bibcode:2007ApPhL..90x2909Z. doi:10.1063/1.2748088. ISSN   0003-6951.
  42. Zhang, Shujun; Xia, Ru; Shrout, Thomas R.; Zang, Guozhong; Wang, Jinfeng (2006-11-15). "Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics". Journal of Applied Physics. 100 (10): 104108–104108–6. Bibcode:2006JAP...100j4108Z. doi:10.1063/1.2382348. ISSN   0021-8979.
  43. 1 2 3 Saito, Yasuyoshi; Takao, Hisaaki; Tani, Toshihiko; Nonoyama, Tatsuhiko; Takatori, Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya (2004-10-31). "Lead-free piezoceramics". Nature. 432 (7013): 84–87. Bibcode:2004Natur.432...84S. doi:10.1038/nature03028. ISSN   0028-0836. PMID   15516921. S2CID   4352954.
  44. Cho, Kyung-Hoon; Park, Hwi-Yeol; Ahn, Cheol-Woo; Nahm, Sahn; Uchino, Kenji; Park, Seung-Ho; Lee, Hyeung-Gyu; Lee, Hwack-Joo (June 2007). "Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3?0.05SrTiO3Ceramics". Journal of the American Ceramic Society. 90 (6): 1946–1949. doi:10.1111/j.1551-2916.2007.01715.x. ISSN   0002-7820.
  45. 1 2 Maurya, Deepam; Zhou, Yuan; Yan, Yongke; Priya, Shashank (2013). "Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response". Journal of Materials Chemistry C. 1 (11): 2102. doi:10.1039/c3tc00619k. ISSN   2050-7526.
  46. Gao, Feng; Liu, Xiang-Chun; Zhang, Chang-Song; Cheng, Li-Hong; Tian, Chang-Sheng (March 2008). "Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth". Ceramics International. 34 (2): 403–408. doi:10.1016/j.ceramint.2006.10.017. ISSN   0272-8842.
  47. Zou, Hua; Sui, Yongxing; Zhu, Xiaoqing; Liu, Bo; Xue, Jianzhong; Zhang, Jianhao (December 2016). "Texture development and enhanced electromechanical properties in <00l>-textured BNT-based materials". Materials Letters. 184: 139–142. Bibcode:2016MatL..184..139Z. doi: 10.1016/j.matlet.2016.08.039 . ISSN   0167-577X.
  48. Chang, Yunfei; Poterala, Stephen F.; Yang, Zupei; Trolier-McKinstry, Susan; Messing, Gary L. (2009-12-07). "⟨001⟩ textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range". Applied Physics Letters. 95 (23): 232905. doi: 10.1063/1.3271682 . ISSN   0003-6951.
  49. Chang, Yunfei; Poterala, Stephen; Yang, Zupei; Messing, Gary L. (2011-03-24). "Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics". Journal of the American Ceramic Society. 94 (8): 2494–2498. doi:10.1111/j.1551-2916.2011.04393.x. ISSN   0002-7820.
  50. Hussain, Ali; Kim, Jin Soo; Song, Tae Kwon; Kim, Myong Ho; Kim, Won Jong; Kim, Sang Su (August 2013). "Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates". Current Applied Physics. 13 (6): 1055–1059. Bibcode:2013CAP....13.1055H. doi:10.1016/j.cap.2013.02.013. ISSN   1567-1739.
  51. Takao, Hisaaki; Saito, Yasuyoshi; Aoki, Yoshifumi; Horibuchi, Kayo (August 2006). "Microstructural Evolution of Crystalline-Oriented (K0.5Na0.5)NbO3 Piezoelectric Ceramics with a Sintering Aid of CuO". Journal of the American Ceramic Society. 89 (6): 1951–1956. doi:10.1111/j.1551-2916.2006.01042.x. ISSN   0002-7820.
  52. Li, Yali; Hui, Chun; Wu, Mengjia; Li, Yongxiang; Wang, Youliang (January 2012). "Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique". Ceramics International. 38: S283–S286. doi:10.1016/j.ceramint.2011.04.102. ISSN   0272-8842.
  53. Cho, H. J.; Kim, M.-H.; Song, T. K.; Lee, J. S.; Jeon, J.-H. (2012-04-13). "Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method". Journal of Electroceramics. 30 (1–2): 72–76. doi:10.1007/s10832-012-9721-8. ISSN   1385-3449. S2CID   138436905.
  54. 1 2 Hao, Jigong; Ye, Chenggen; Shen, Bo; Zhai, Jiwei (2012-04-25). "Enhanced piezoelectric properties of 〈001〉 textured lead-free (KxNa1 − x)0.946Li0.054NbO3 ceramics with large strain". Physica Status Solidi A. 209 (7): 1343–1349. doi:10.1002/pssa.201127747. ISSN   1862-6300. S2CID   121548719.
  55. Gupta, Shashaank; Belianinov, Alexei; Baris Okatan, Mahmut; Jesse, Stephen; Kalinin, Sergei V.; Priya, Shashank (2014-04-28). "Fundamental limitation to the magnitude of piezoelectric response of ⟨001⟩pc textured K0.5Na0.5NbO3 ceramic". Applied Physics Letters. 104 (17): 172902. Bibcode:2014ApPhL.104q2902G. doi:10.1063/1.4874648. ISSN   0003-6951.
  56. Bai, Wangfeng; Chen, Daqin; Li, Peng; Shen, Bo; Zhai, Jiwei; Ji, Zhenguo (February 2016). "Enhanced electromechanical properties in <00l>-textured (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3 lead-free piezoceramics". Ceramics International. 42 (2): 3429–3436. doi:10.1016/j.ceramint.2015.10.139. ISSN   0272-8842.
  57. Ye, Shukai; Fuh, Jerry; Lu, Li; Chang, Ya-lin; Yang, Jer-Ren (2013). "Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics". RSC Advances. 3 (43): 20693. Bibcode:2013RSCAd...320693Y. doi:10.1039/c3ra43429j. ISSN   2046-2069.
  58. Schultheiß, Jan; Clemens, Oliver; Zhukov, Sergey; von Seggern, Heinz; Sakamoto, Wataru; Koruza, Jurij (2017-03-03). "Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85 Ca0.15 TiO3 piezoceramics". Journal of the American Ceramic Society. 100 (5): 2098–2107. doi:10.1111/jace.14749. ISSN   0002-7820.
  59. Omori, T.; Suzuki, H.; Sampei, T.; Yako, K.; Kanero, T. (1990). "High performance soft magnetic material "Ferroperm"". Bulletin of the Japan Institute of Metals. 29 (5): 364–366. doi: 10.2320/materia1962.29.364 . ISSN   0021-4426.
  60. Chan et al., 2008
  61. Lee et al., 2009
  62. Sasaki, Atsushi; Chiba, Tatsuya; Mamiya, Youichi; Otsuki, Etsuo (1999-09-30). "Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3Systems". Japanese Journal of Applied Physics. 38 (Part 1, No. 9B): 5564–5567. Bibcode:1999JaJAP..38.5564S. doi:10.1143/jjap.38.5564. ISSN   0021-4922. S2CID   118366580.
  63. Takenaka, Tadashi; Maruyama, Kei-ichi; Sakata, Koichiro (1991-09-30). "(Bi1/2Na1/2)TiO3-BaTiO3System for Lead-Free Piezoelectric Ceramics". Japanese Journal of Applied Physics. 30 (Part 1, No. 9B): 2236–2239. Bibcode:1991JaJAP..30.2236T. doi:10.1143/jjap.30.2236. ISSN   0021-4922. S2CID   124093028.
  64. Tanaka, Toshio; Tanaka, Shoji (1960-04-15). "Measurement of Piezoelectric Constants of a CdS Crystal". Journal of the Physical Society of Japan. 15 (4): 726. Bibcode:1960JPSJ...15..726T. doi:10.1143/jpsj.15.726. ISSN   0031-9015.
  65. 1 2 Hutson, A. R. (1960-05-15). "Piezoelectricity and Conductivity in ZnO and CdS". Physical Review Letters. 4 (10): 505–507. Bibcode:1960PhRvL...4..505H. doi:10.1103/physrevlett.4.505. ISSN   0031-9007.
  66. 1 2 Schofield, D.; Brown, R. F. (1957-05-01). "An Investigation of Some Barium Titanate Compositions for Transducer Applications". Canadian Journal of Physics. 35 (5): 594–607. Bibcode:1957CaJPh..35..594S. doi:10.1139/p57-067. ISSN   0008-4204.
  67. 1 2 EGERTON, L.; DILLON, DOLORES M. (September 1959). "Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate". Journal of the American Ceramic Society. 42 (9): 438–442. doi:10.1111/j.1151-2916.1959.tb12971.x. ISSN   0002-7820.
  68. Ikeda, Takuro; Tanaka, Yoichi; Toyoda, Hiroo (1961-12-15). "Piezoelectric Properties of Triglycine Sulphate". Journal of the Physical Society of Japan. 16 (12): 2593–2594. Bibcode:1961JPSJ...16.2593I. doi:10.1143/jpsj.16.2593. ISSN   0031-9015.
  69. Ikeda, Takuro; Tanaka, Yoichi; Toyoda, Hiroo (January 1962). "Piezoelectric Properties of Triglycine-Sulphate". Japanese Journal of Applied Physics. 1 (1): 13–21. Bibcode:1962JaJAP...1...13I. doi:10.1143/jjap.1.13. ISSN   0021-4922. S2CID   250862299.
  70. 1 2 3 Brown, C.S.; Kell, R.C.; Taylor, R.; Thomas, L.A. (1962). "Piezo-electric materials". Proceedings of the IEE - Part B: Electronic and Communication Engineering. 109 (43): 99. doi:10.1049/pi-b-2.1962.0169. ISSN   0369-8890.
  71. BAXTER, P.; HELLICAR, N. J. (November 1960). "Electrical Properties of Lead-Barium Niobates and Associated Materials". Journal of the American Ceramic Society. 43 (11): 578–583. doi:10.1111/j.1151-2916.1960.tb13619.x. ISSN   0002-7820.
  72. 1 2 Pullin, A.D.E. (August 1962). "Statistical mechanics Norman Davidson. McGraw-Hill Publishing Co. Ltd., London: McGraw-Hill Book Company, Inc., New York, 1962. pp. ix + 540. £5.12.6". Talanta. 9 (8): 747. doi:10.1016/0039-9140(62)80173-8. ISSN   0039-9140.
  73. 1 2 Berlincourt, D.; Jaffe, B.; Jaffe, H.; Krueger, H.H.A. (February 1960). "Transducer Properties of Lead Titanate Zirconate Ceramics". IRE Transactions on Ultrasonic Engineering. 7 (1): 1–6. doi:10.1109/t-pgue.1960.29253. ISSN   0096-1019. S2CID   51638579.
  74. Jaffe, B.; Roth, R.S.; Marzullo, S. (November 1955). "Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate". Journal of Research of the National Bureau of Standards. 55 (5): 239. doi: 10.6028/jres.055.028 . ISSN   0091-0635.
  75. Kell, R.C. (1962). "Properties of niobate high-temperature piezo-electric ceramics". Proceedings of the IEE - Part B: Electronic and Communication Engineering. 109 (22S): 369–373. doi:10.1049/pi-b-2.1962.0065. ISSN   2054-0418.
  76. Berlincourt, D.; Cmolik, C.; Jaffe, H. (February 1960). "Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions". Proceedings of the IRE. 48 (2): 220–229. doi:10.1109/jrproc.1960.287467. ISSN   0096-8390. S2CID   51673445.
  77. Berlincourt, D.; Cmolik, C.; Jaffe, H. (February 1960). "Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions". Proceedings of the IRE. 48 (2): 220–229. doi:10.1109/jrproc.1960.287467. ISSN   0096-8390. S2CID   51673445.
  78. Defaÿ, Emmanuel (2011-03-14). Integration of Ferroelectric and Piezoelectric Thin Films. doi:10.1002/9781118616635. ISBN   9781118616635.
  79. Shibata, Kenji; Suenaga, Kazufumi; Watanabe, Kazutoshi; Horikiri, Fumimasa; Nomoto, Akira; Mishima, Tomoyoshi (2011-04-20). "Improvement of Piezoelectric Properties of (K,Na)NbO3Films Deposited by Sputtering". Japanese Journal of Applied Physics. 50 (4): 041503. Bibcode:2011JaJAP..50d1503S. doi:10.1143/jjap.50.041503. ISSN   0021-4922. S2CID   97530996.
  80. Sessler, G. M. (December 1981). "Piezoelectricity in polyvinylidenefluoride". The Journal of the Acoustical Society of America. 70 (6): 1596–1608. Bibcode:1981ASAJ...70.1596S. doi:10.1121/1.387225. ISSN   0001-4966.
  81. Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff (2017-03-01). "A Guided Wave Sensor Enabling Simultaneous Wavenumber-Frequency Analysis for Both Lamb and Shear-Horizontal Waves". Sensors. 17 (3): 488. Bibcode:2017Senso..17..488R. doi: 10.3390/s17030488 . ISSN   1424-8220. PMC   5375774 . PMID   28257065.
  82. Tsubouchi, K.; Sugai, K.; Mikoshiba, N. (1981). "AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3and AlN/Si". 1981 Ultrasonics Symposium. IEEE: 375–380. doi:10.1109/ultsym.1981.197646.
  83. Ke, Tsung-Ying; Chen, Hsiang-An; Sheu, Hwo-Shuenn; Yeh, Jien-Wei; Lin, Heh-Nan; Lee, Chi-Young; Chiu, Hsin-Tien (2008-05-27). "Sodium Niobate Nanowire and Its Piezoelectricity". The Journal of Physical Chemistry C. 112 (24): 8827–8831. doi:10.1021/jp711598j. ISSN   1932-7447.
  84. Wang, J.; Stampfer, C.; Roman, C.; Ma, W. H.; Setter, N.; Hierold, C. (December 2008). "Piezoresponse force microscopy on doubly clamped KNbO3 nanowires". Applied Physics Letters. 93 (22): 223101. Bibcode:2008ApPhL..93v3101W. doi:10.1063/1.3000385. ISSN   0003-6951.
  85. Zhang, X. Y.; Zhao, X.; Lai, C. W.; Wang, J.; Tang, X. G.; Dai, J. Y. (November 2004). "Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays". Applied Physics Letters. 85 (18): 4190–4192. Bibcode:2004ApPhL..85.4190Z. doi:10.1063/1.1814427. hdl: 10397/4241 . ISSN   0003-6951.
  86. Zhao, Min-Hua; Wang, Zhong-Lin; Mao, Scott X. (April 2004). "Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope". Nano Letters. 4 (4): 587–590. Bibcode:2004NanoL...4..587Z. doi:10.1021/nl035198a. ISSN   1530-6984.
  87. Luo, Yun; Szafraniak, Izabela; Zakharov, Nikolai D.; Nagarajan, Valanoor; Steinhart, Martin; Wehrspohn, Ralf B.; Wendorff, Joachim H.; Ramesh, Ramamoorthy; Alexe, Marin (2003-07-21). "Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate". Applied Physics Letters. 83 (3): 440–442. Bibcode:2003ApPhL..83..440L. doi:10.1063/1.1592013. ISSN   0003-6951. S2CID   123413166.
  88. Yun, Wan Soo; Urban, Jeffrey J.; Gu, Qian; Park, Hongkun (May 2002). "Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy". Nano Letters. 2 (5): 447–450. Bibcode:2002NanoL...2..447Y. doi:10.1021/nl015702g. ISSN   1530-6984.
  89. Lin, Yi-Feng; Song, Jinhui; Ding, Yong; Lu, Shih-Yuan; Wang, Zhong Lin (2008-01-14). "Piezoelectric nanogenerator using CdS nanowires". Applied Physics Letters. 92 (2): 022105. Bibcode:2008ApPhL..92b2105L. doi:10.1063/1.2831901. hdl: 1853/27469 . ISSN   0003-6951. S2CID   123588080.
  90. Wang, J.; Sandu, C. S.; Colla, E.; Wang, Y.; Ma, W.; Gysel, R.; Trodahl, H. J.; Setter, N.; Kuball, M. (2007-03-26). "Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires". Applied Physics Letters. 90 (13): 133107. Bibcode:2007ApPhL..90m3107W. doi:10.1063/1.2716842. ISSN   0003-6951. S2CID   123121473.
  91. Wang, Zhaoyu; Hu, Jie; Suryavanshi, Abhijit P.; Yum, Kyungsuk; Yu, Min-Feng (October 2007). "Voltage Generation from Individual BaTiO3Nanowires under Periodic Tensile Mechanical Load". Nano Letters. 7 (10): 2966–2969. Bibcode:2007NanoL...7.2966W. doi:10.1021/nl070814e. ISSN   1530-6984. PMID   17894515.
  92. Jeong, Chang Kyu; Park, Kwi-Il; Ryu, Jungho; Hwang, Geon-Tae; Lee, Keon Jae (May 2014). "Nanogenerators: Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler (Adv. Funct. Mater. 18/2014)". Advanced Functional Materials. 24 (18): 2565. doi: 10.1002/adfm.201470112 . ISSN   1616-301X.
  93. Park, Kwi-Il; Xu, Sheng; Liu, Ying; Hwang, Geon-Tae; Kang, Suk-Joong L.; Wang, Zhong Lin; Lee, Keon Jae (2010-12-08). "Piezoelectric BaTiO3Thin Film Nanogenerator on Plastic Substrates". Nano Letters. 10 (12): 4939–4943. Bibcode:2010NanoL..10.4939P. doi:10.1021/nl102959k. ISSN   1530-6984. PMID   21050010.
  94. Stoppel, F.; Schröder, C.; Senger, F.; Wagner, B.; Benecke, W. (2011). "AlN-based piezoelectric micropower generator for low ambient vibration energy harvesting". Procedia Engineering. 25: 721–724. doi: 10.1016/j.proeng.2011.12.178 . ISSN   1877-7058.
  95. Lee, Ju-Hyuck; Park, Jae Young; Cho, Eun Bi; Kim, Tae Yun; Han, Sang A.; Kim, Tae-Ho; Liu, Yanan; Kim, Sung Kyun; Roh, Chang Jae; Yoon, Hong-Joon; Ryu, Hanjun (2017-06-06). "Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators". Advanced Materials. 29 (29): 1606667. Bibcode:2017AdM....2906667L. doi:10.1002/adma.201606667. ISSN   0935-9648. PMID   28585262. S2CID   5516996.
  96. Zhu, Hanyu; Wang, Yuan; Xiao, Jun; Liu, Ming; Xiong, Shaomin; Wong, Zi Jing; Ye, Ziliang; Ye, Yu; Yin, Xiaobo; Zhang, Xiang (2014-12-22). "Observation of piezoelectricity in free-standing monolayer MoS2". Nature Nanotechnology. 10 (2): 151–155. doi:10.1038/nnano.2014.309. ISSN   1748-3387. PMID   25531085.
  97. Zhong, Junwen; Zhong, Qize; Zang, Xining; Wu, Nan; Li, Wenbo; Chu, Yao; Lin, Liwei (July 2017). "Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments". Nano Energy. 37: 268–274. Bibcode:2017NEne...37..268Z. doi:10.1016/j.nanoen.2017.05.034. hdl: 10356/83115 . ISSN   2211-2855.