Living technology is the field of technology that derives its functionality and usefulness from the properties that make natural organisms alive (see life). It may be seen as a technological subfield of both artificial life and complex systems and is relevant beyond biotechnology to nanotechnology, information technology, artificial intelligence, environmental technology and socioeconomic technology for managing human society.
Living technology is broadly defined as technology that derives its usefulness primarily from its life-like properties. Living technologies are "characterized by robustness, autonomy, energy efficiency, sustainability, local intelligence, self-repair, adaptation, self-replication and evolution, all properties current technology lack, but living systems possess." [1] Thus, the potential usefulness of technologies that are engineered to become more life-like stem from the properties of life itself. [2] [3]
The word “technology,” from the Greek techne, usually evokes physical technologies like artificial intelligence, smartphones or genetically engineered organisms. But there is an older meaning. By Jacob Bigelow’s 1829 definition, technology can describe a process that benefits society. In that sense, social institutions, like governments and healthcare systems, can be seen, and studied as technologies. Physical technologies may be defined as tools for transforming matter, energy or information in pursuit of our goals while social technologies are tools for organizing people in pursuit of our goals. Under this definition, our social institutions, economy, and laws are technologies that, like physical technologies, can be studied and improved. [4] In the broadest sense living technology are technologies that possess properties that characterize living processes.
The term "living technology" was coined by Mark Bedau, John McCaskill, Norman Packard and Steen Rasmussen in 2001, in a pitch to form a center for living technology. [5] The ideas mainly grew out of the conceptual foundations of Artificial Life and Complex Systems, but with an engineering focus where engineering aims at developing technologies with life-like properties mainly using bottom up design approaches.
Based on the living technology ideas a number of projects were initiated, including the European Commission sponsored project, Programmable Artificial Cell Evolution (PACE), [6] that in part co-sponsored the European Centre for Living Technology (ECLT) in Venice, Italy in 2004. Also the Protocell Assembly project at Los Alamos National Laboratory, USA, was based on these ideas and also sponsored in 2004. A number of successive EC sponsored projects followed including a EC call for proposals on Living Technology in 2009. In 2007 the Center for Fundamental Living Technology (FLinT) [1] was established at the University of Southern Denmark co-sponsored by the Danish National Science Foundation (Grundforskningsfonden). An EC Flagship project based on further developing living technologies, Sustainable Programmable Living Technologies (SPLiT) was submitted in 2010 and ranked within the top 15 proposals, but did not obtain funding.
It is obvious that technology in particular over recent years has become both more life-like and more intelligent. This is enabling technology to both become more powerful and to meet societal challenges of being less disruptive to the environment, more sustainable, less subject to failure and more akin to human needs and accepted modes of interaction. This development is only expected to continue.
The research perspectives and methods for living technologies are usually bottom up in opposition to top down. Thus, there is focus on engineering design without an explicit blueprint, which means the desired system properties emerge from the subsystem interactions. It is an ambition for engineering living technologies to create systems that are adaptive and can develop in an openended way over time as seen in ecological systems. The development of living technologies pose a number of ethical issues that in part has to be addressed in the engineering design process and in part through legislation.
As with biotechnology, there is a range of technology that might be considered as versions of living technology. Below is a list, beginning with rather trivial versions, and ending with more modern, sophisticated versions. Generally the term is widely understood to apply to technology that does not merely have living properties or involve life, but rather technology that derives is principal functionality from its living properties.
Ethical issues in living technology are of several kinds: (i) issues related to the creation of life-like or living entities like artificial cells (ii) safety issues related to the release of entities potentially capable of proliferation into the environment (iii) ecological issues related to preservation of biodiversity, natural wilderness and privacy (iv) issues of ownership and responsibility for actions involving ongoing processes rather than material objects
The first issue was given careful consideration during the PACE project, [15] resulting in a guideline document [16]
In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes. If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.
Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of “bottom-up” design.
Tierra is a computer simulation developed by ecologist Thomas S. Ray in the early 1990s in which computer programs compete for time and space. In this context, the computer programs in Tierra are considered to be evolvable and can mutate, self-replicate and recombine. Tierra's virtual machine is written in C. It operates on a custom instruction set designed to facilitate code changes and reordering, including features such as jump to template.
A bioreactor is any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical process is carried out which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from litres to cubic metres, and are often made of stainless steel. It may also refer to a device or system designed to grow cells or tissues in the context of cell culture. These devices are being developed for use in tissue engineering or biochemical/bioprocess engineering.
Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms, and it applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature.
Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. The name "xenobiology" derives from the Greek word xenos, which means "stranger, alien". Xenobiology is a form of biology that is not (yet) familiar to science and is not found in nature. In practice, it describes novel biological systems and biochemistries that differ from the canonical DNA–RNA-20 amino acid system. For example, instead of DNA or RNA, XB explores nucleic acid analogues, termed xeno nucleic acid (XNA) as information carriers. It also focuses on an expanded genetic code and the incorporation of non-proteinogenic amino acids, or “xeno amino acids” into proteins.
Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome.
Norman Harry Packard is a chaos theory physicist and one of the founders of the Prediction Company and ProtoLife. He is an alumnus of Reed College and the University of California, Santa Cruz. Packard is known for his contributions to chaos theory, complex systems, and artificial life. He coined the phrase "the edge of chaos".
Non-cellular life, also known as acellular life, is life that exists without a cellular structure for at least part of its life cycle. Historically, most definitions of life postulated that an organism must be composed of one or more cells, but, for some, this is no longer considered necessary, and modern criteria allow for forms of life based on other structural arrangements.
An artificial cell, synthetic cell or minimal cell is an engineered particle that mimics one or many functions of a biological cell. Often, artificial cells are biological or polymeric membranes which enclose biologically active materials. As such, liposomes, polymersomes, nanoparticles, microcapsules and a number of other particles can qualify as artificial cells.
The following outline is provided as an overview of and topical guide to cell biology:
A protocell is a self-organized, endogenously ordered, spherical collection of lipids proposed as a rudimentary precursor to cells during the origin of life. A central question in evolution is how simple protocells first arose and how their progeny could diversify, thus enabling the accumulation of novel biological emergences over time. Although a functional protocell has not yet been achieved in a laboratory setting, the goal to understand the process appears well within reach.
Targeted drug delivery is one of many ways researchers seek to improve drug delivery systems' overall efficacy, safety, and delivery. Within this medical field is a special reversal form of drug delivery called chemotactic drug targeting. By using chemical agents to help guide a drug carrier to a specific location within the body, this innovative approach seeks to improve precision and control during the drug delivery process, decrease the risk of toxicity, and potentially lower the required medical dosage needed. The general components of the conjugates are designed as follows: (i) carrier – regularly possessing promoter effect also on internalization into the cell; (ii) chemotactically active ligands acting on the target cells; (iii) drug to be delivered in a selective way and (iv) spacer sequence which joins drug molecule to the carrier and due to it enzyme labile moiety makes possible the intracellular compartment specific release of the drug. Careful selection of chemotactic component of the ligand not only the chemoattractant character could be expended, however, chemorepellent ligands are also valuable as they are useful to keep away cell populations degrading the conjugate containing the drug. In a larger sense, chemotactic drug-targeting has the potential to improve cancer, inflammation, and arthritis treatment by taking advantage of the difference in environment between the target site and its surroundings. Therefore, this Wikipedia article aims to provide a brief overview of chemotactic drug targeting, the principles behind the approach, possible limitations and advantages, and its application to cancer and inflammation.
The term chemoton refers to an abstract model for the fundamental unit of life introduced by Hungarian theoretical biologist Tibor Gánti. Gánti conceived the basic idea in 1952 and formulated the concept in 1971 in his book The Principles of Life. He suggested that the chemoton was the original ancestor of all organisms.
A sulphobe is a film composed of formaldehyde and thiocyanates alleged to have lifelike properties. The name is a portmanteau of sulphur microbe. Sulphobes were a subject in the researches of Alfonso L. Herrera, a biologist who studied the origin of life.
Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American computer scientist, in 1986. In 1987, Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.
Jeewanu are synthetic chemical particles that possess cell-like structure and seem to have some functional properties; that is, they are a model of primitive cells, or protocells. It was first synthesised by Krishna Bahadur, an Indian chemist and his team in 1963. Using photochemical reaction, they produced coacervates, microscopic cell-like spheres from a mixture of simple organic and inorganic compounds. Bahadur named these particles 'Jeewanu' because they exhibit some of the basic properties of a cell, such as the presence of semipermeable membrane, amino acids, phospholipids and carbohydrates. Further, like living cells, they had several catalytic activities. Jeewanu are cited as models of protocells for the origin of life, and as artificial cells.
John S. McCaskill is an Australian chemist who works on the evolution of information processing in a wide variety of fields ranging from theoretical biochemistry to novel computation to artificial life and microrobotics.
The hazards of synthetic biology include biosafety hazards to workers and the public, biosecurity hazards stemming from deliberate engineering of organisms to cause harm, and hazards to the environment. The biosafety hazards are similar to those for existing fields of biotechnology, mainly exposure to pathogens and toxic chemicals; however, novel synthetic organisms may have novel risks. For biosecurity, there is concern that synthetic or redesigned organisms could theoretically be used for bioterrorism. Potential biosecurity risks include recreating known pathogens from scratch, engineering existing pathogens to be more dangerous, and engineering microbes to produce harmful biochemicals. Lastly, environmental hazards include adverse effects on biodiversity and ecosystem services, including potential changes to land use resulting from agricultural use of synthetic organisms.
A scenario is a set of related concepts pertinent to the origin of life (abiogenesis), such as the iron-sulfur world. Many alternative abiogenesis scenarios have been proposed by scientists in a variety of fields from the 1950s onwards in an attempt to explain how the complex mechanisms of life could have come into existence. These include hypothesized ancient environments that might have been favourable for the origin of life, and possible biochemical mechanisms.