Load pocket

Last updated

A load pocket is an area of electric grid (typically small) that has limited ability to import electricity due to either very high concentration of demand or insufficient transmission capabilities [1] (transmission congestion) and therefore cannot be entirely provided with power without participation of local electricity generation providers. A typical load pocket includes a major city (e.g., New York City, San Francisco, San Diego in the US). Load pocket's existence usually indicates difficulties with building of either new generation or new transmission, or both due to the area constraints or political pressure [2] and despite the pocket being an attractive place for investment (market congestion pricing strongly incentivizes new generation inside the pocket). [1] The load pockets represent a problem for the deregulated electricity markets, as in the absence of regulation the captive customers are forced to accept the prices set by the local providers. [3]

Contents

Effect on restructured energy markets

In the restructured electricity markets load pockets create a new problem absent in the "traditional" (vertically integrated) electricity markets: maintaining enough transmission/generation capacity for a competitive market to work is prohibitively inefficient, [4] so local generators might gain oligopolic market power and ability control prices, especially at peak load or during an outage at a large generation facility. [5] This makes withholding capacity to artificially create an electricity shortage rational, forcing introduction of price caps [5] by the regulation authority. The caps in turn can create a missing money problem. [6]

Load pockets provide good examples of market friction: [2]

Load pockets also create reliability concerns. [1]

Compensating providers in the load pocket

An extremely simplified example can be used to illustrate the need to compensate the providers in the load pocket beyond the level defined by the wide market pricing: [3]

Under these conditions, the north is a load pocket; an attempt to create a separate market for it would fail due to monopolistic power the local provider would have, while sweeping both north and south into a single market will cause this market to clear at the price that does not cover the operating costs in the north. Therefore, some mechanism of compensation for the north's generator that does not depend on the market price is required. [3]

Reliability Must Run contracts

"Reliability Must Run" (RMR) contracts were created as a tool to temporarily keep an ageing plant in operation in a case it is needed for the reliability reasons despite its high operating costs. RMR is a relatively long-term contract (a year or more) between an independent system operator (ISO) and the generator to produce electricity with a cost-plus pricing. RMRs are used to compensate the incumbent providers in the load pockets. [4]

Other ways of handling the problem

In addition to the price caps and RMRs, the system operators deal with the load pocket problems through a combination of different approaches: [7]

Related Research Articles

The New Zealand electricity market (NZEM) is a decentralised electricity market regulated by the Electricity Industry Participation Code administered by the Electricity Authority (EA). The authority was established in November 2010 to replace the Electricity Commission.

An electricity market is a system that enables the exchange of electrical energy, through an electrical grid. Historically, electricity has been primarily sold by companies that operate electric generators, and purchased by consumers or electricity retailers.

<span class="mw-page-title-main">Electric power industry</span> Industry that provides the production and delivery of electric energy

The electric power industry covers the generation, transmission, distribution and sale of electric power to the general public and industry. The commercial distribution of electric power started in 1882 when electricity was produced for electric lighting. In the 1880s and 1890s, growing economic and safety concerns lead to the regulation of the industry. What was once an expensive novelty limited to the most densely populated areas, reliable and economical electric power has become an essential aspect for normal operation of all elements of developed economies.

The National Electricity Market (NEM) is an arrangement in Australia's electricity sector for the connection of the electricity transmission grids of the eastern and southern Australia states and territories to create a cross-state wholesale electricity market. The Australian Energy Market Commission develops and maintains the Australian National Electricity Rules (NER), which have the force of law in the states and territories participating in NEM. The Rules are enforced by the Australian Energy Regulator. The day-to-day management of NEM is performed by the Australian Energy Market Operator.

<span class="mw-page-title-main">Electricity sector in Canada</span>

The electricity sector in Canada has played a significant role in the economic and political life of the country since the late 19th century. The sector is organized along provincial and territorial lines. In a majority of provinces, large government-owned integrated public utilities play a leading role in the generation, transmission, and distribution of electricity. Ontario and Alberta have created electricity markets in the last decade to increase investment and competition in this sector of the economy.

<span class="mw-page-title-main">Electric Reliability Council of Texas</span> Regional transmission organization in Texas

The Electric Reliability Council of Texas, Inc. (ERCOT) is an American organization that operates Texas's electrical grid, the Texas Interconnection, which supplies power to more than 25 million Texas customers and represents 90 percent of the state's electric load. ERCOT is the first independent system operator (ISO) in the United States. ERCOT works with the Texas Reliability Entity (TRE), one of six regional entities within the North American Electric Reliability Corporation (NERC) that coordinate to improve reliability of the bulk power grid.

<span class="mw-page-title-main">Regional transmission organization (North America)</span> Electric power coordinator

A regional transmission organization (RTO) in the United States is an electric power transmission system operator (TSO) that coordinates, controls, and monitors a multi-state electric grid. The transfer of electricity between states is considered interstate commerce, and electric grids spanning multiple states are therefore regulated by the Federal Energy Regulatory Commission (FERC). The voluntary creation of RTOs was initiated by FERC in December 1999. The purpose of the RTO is to promote economic efficiency, reliability, and non-discriminatory practices while reducing government oversight.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries, electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

Electrical devices are considered grid friendly if they operate in a manner that supports electrical grid reliability through demand response. Basic grid-friendly devices may incorporate features that work to offset short-term undesirable changes in line frequency or voltage; more sophisticated devices may alter their operating profile based on the current market price for electricity, reducing load when prices are at a peak. Grid-friendly devices can include major appliances found in homes, commercial building systems such as HVAC, and many industrial systems.

<span class="mw-page-title-main">Merit order</span> Ranking of available sources of energy

The merit order is a way of ranking available sources of energy, especially electrical generation, based on ascending order of price and sometimes pollution, together with amount of energy that will be generated. In a centralized management, the ranking is so that those with the lowest marginal costs are the first ones to be brought online to meet demand, and the plants with the highest marginal costs are the last to be brought on line. Dispatching generation in this way, known as economic dispatch, minimizes the cost of production of electricity. Sometimes generating units must be started out of merit order, due to transmission congestion, system reliability or other reasons.

Availability Based Tariff (ABT) is a frequency based pricing mechanism applicable in India for unscheduled electric power transactions. The ABT falls under electricity market mechanisms to charge and regulate power to achieve short term and long term network stability as well as incentives and dis-incentives to grid participants against deviations in committed supplies as the case may be.

<span class="mw-page-title-main">Electricity policy of Alberta</span>

The electricity policy of Alberta, enacted through several agencies, is to create an electricity sector with a competitive market that attracts investors, while providing consumers with reliable and affordable electricity, as well as reducing harmful pollution to protect the environment and the health of Albertans, according to their 2022 website.

<span class="mw-page-title-main">ISO New England</span> Oversees the operation of New Englands bulk electric power system

ISO New England Inc. (ISO-NE) is an independent, non-profit regional transmission organization (RTO), headquartered in Holyoke, Massachusetts, serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.

<span class="mw-page-title-main">PJM Interconnection</span> Major electric grid coordinator in northeastern USA

PJM Interconnection LLC (PJM) is a regional transmission organization (RTO) in the United States. It is part of the Eastern Interconnection grid operating an electric transmission system serving all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, and the District of Columbia.

<span class="mw-page-title-main">Electrical grid</span> Interconnected network for delivering electricity from suppliers to consumers

An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids consist of power stations, electrical substations to step voltage up or down, electric power transmission to carry power over long distances, and finally electric power distribution to customers. In that last step, voltage is stepped down again to the required service voltage. Power stations are typically built close to energy sources and far from densely populated areas. Electrical grids vary in size and can cover whole countries or continents. From small to large there are microgrids, wide area synchronous grids, and super grids. The combined transmission and distribution network is part of electricity delivery, known as the power grid.

<span class="mw-page-title-main">Wide area synchronous grid</span> Regional electrical grid

A wide area synchronous grid is a three-phase electric power grid that has regional scale or greater that operates at a synchronized utility frequency and is electrically tied together during normal system conditions. Also known as synchronous zones, the most powerful is the Northern Chinese State Grid with 1,700 gigawatts (GW) of generation capacity, while the widest region served is that of the IPS/UPS system serving most countries of the former Soviet Union. Synchronous grids with ample capacity facilitate electricity trading across wide areas. In the ENTSO-E in 2008, over 350,000 megawatt hours were sold per day on the European Energy Exchange (EEX).

The unit commitment problem (UC) in electrical power production is a large family of mathematical optimization problems where the production of a set of electrical generators is coordinated in order to achieve some common target, usually either matching the energy demand at minimum cost or maximizing revenue from electricity production. This is necessary because it is difficult to store electrical energy on a scale comparable with normal consumption; hence, each (substantial) variation in the consumption must be matched by a corresponding variation of the production.

Resource adequacy in the field of electric power is the ability of the electric grid to satisfy the end-user power demand at any time. RA is a component of the electrical grid reliability. For example, sufficient unused generation capacity shall be available to the electrical grid at any time to accommodate major equipment failures and drops in variable renewable energy sources. The adequacy standard should satisfy the chosen reliability index, typically the loss of load expectation (LOLE) of 1 day in 10 years.

Electricity transmission congestion is a condition of the electrical grid that prevents the accepted or forecasted load schedules from being implemented due to the grid configuration and equipment performance limitations. In simple terms, congestion occurs when overloaded transmission lines are unable to carry additional electricity flow due to the risk of overheating and the transmission system operator (TSO) has to direct the providers to adjust their dispatch levels to accommodate the constraint. In an electricity market a power plant may be able to produce electricity at a competitive price but cannot transmit the power to a willing buyer. Congestion increases the electricity prices for some customers.

References

Sources