Local rigidity

Last updated

Local rigidity theorems in the theory of discrete subgroups of Lie groups are results which show that small deformations of certain such subgroups are always trivial. It is different from Mostow rigidity and weaker (but holds more frequently) than superrigidity.

Contents

History

The first such theorem was proven by Atle Selberg for co-compact discrete subgroups of the unimodular groups . [1] Shortly afterwards a similar statement was proven by Eugenio Calabi in the setting of fundamental groups of compact hyperbolic manifolds. Finally, the theorem was extended to all co-compact subgroups of semisimple Lie groups by André Weil. [2] [3] The extension to non-cocompact lattices was made later by Howard Garland and Madabusi Santanam Raghunathan. [4] The result is now sometimes referred to as Calabi—Weil (or just Weil) rigidity.

Statement

Deformations of subgroups

Let be a group generated by a finite number of elements and a Lie group. Then the map defined by is injective and this endows with a topology induced by that of . If is a subgroup of then a deformation of is any element in . Two representations are said to be conjugated if there exists a such that for all . See also character variety.

Lattices in simple groups not of type A1 or A1 × A1

The simplest statement is when is a lattice in a simple Lie group and the latter is not locally isomorphic to or and (this means that its Lie algebra is not that of one of these two groups).

There exists a neighbourhood in of the inclusion such that any is conjugated to .

Whenever such a statement holds for a pair we will say that local rigidity holds.

Lattices in SL(2,C)

Local rigidity holds for cocompact lattices in . A lattice in which is not cocompact has nontrivial deformations coming from Thurston's hyperbolic Dehn surgery theory. However, if one adds the restriction that a representation must send parabolic elements in to parabolic elements then local rigidity holds.

Lattices in SL(2,R)

In this case local rigidity never holds. For cocompact lattices a small deformation remains a cocompact lattice but it may not be conjugated to the original one (see Teichmüller space for more detail). Non-cocompact lattices are virtually free and hence have non-lattice deformations.

Semisimple Lie groups

Local rigidity holds for lattices in semisimple Lie groups providing the latter have no factor of type A1 (i.e. locally isomorphic to or ) or the former is irreducible.

Other results

There are also local rigidity results where the ambient group is changed, even in case where superrigidity fails. For example, if is a lattice in the unitary group and then the inclusion is locally rigid. [5]

A uniform lattice in any compactly generated topological group is topologically locally rigid, in the sense that any sufficiently small deformation of the inclusion is injective and is a uniform lattice in . An irreducible uniform lattice in the isometry group of any proper geodesically complete -space not isometric to the hyperbolic plane and without Euclidean factors is locally rigid. [6]

Proofs of the theorem

Weil's original proof is by relating deformations of a subgroup in to the first cohomology group of with coefficients in the Lie algebra of , and then showing that this cohomology vanishes for cocompact lattices when has no simple factor of absolute type A1. A more geometric proof which also work in the non-compact cases uses Charles Ehresmann (and William Thurston's) theory of structures. [7]

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

<span class="mw-page-title-main">Arithmetic group</span>

In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

In mathematics, a Fuchsian model is a representation of a hyperbolic Riemann surface R as a quotient of the upper half-plane H by a Fuchsian group. Every hyperbolic Riemann surface admits such a representation. The concept is named after Lazarus Fuchs.

<span class="mw-page-title-main">Hyperbolic manifold</span> Space where every point locally resembles a hyperbolic space

In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.

In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by Mostow (1968) and extended to finite volume manifolds by Marden (1974) in 3 dimensions, and by Prasad (1973) in all dimensions at least 3. Gromov (1981) gave an alternate proof using the Gromov norm. Besson, Courtois & Gallot (1996) gave the simplest available proof.

<span class="mw-page-title-main">Hyperbolic group</span> Mathematical concept

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov (1987). The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology, and combinatorial group theory. In a very influential chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.

In mathematics, a nilmanifold is a differentiable manifold which has a transitive nilpotent group of diffeomorphisms acting on it. As such, a nilmanifold is an example of a homogeneous space and is diffeomorphic to the quotient space , the quotient of a nilpotent Lie group N modulo a closed subgroup H. This notion was introduced by Anatoly Mal'cev in 1951.

In mathematics, specifically in operator K-theory, the Baum–Connes conjecture suggests a link between the K-theory of the reduced C*-algebra of a group and the K-homology of the classifying space of proper actions of that group. The conjecture sets up a correspondence between different areas of mathematics, with the K-homology of the classifying space being related to geometry, differential operator theory, and homotopy theory, while the K-theory of the group's reduced C*-algebra is a purely analytical object.

In mathematics, more precisely in group theory and hyperbolic geometry, Arithmetic Kleinian groups are a special class of Kleinian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. An arithmetic hyperbolic three-manifold is the quotient of hyperbolic space by an arithmetic Kleinian group.

<span class="mw-page-title-main">Lattice (discrete subgroup)</span>

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

In mathematics, Ratner's theorems are a group of major theorems in ergodic theory concerning unipotent flows on homogeneous spaces proved by Marina Ratner around 1990. The theorems grew out of Ratner's earlier work on horocycle flows. The study of the dynamics of unipotent flows played a decisive role in the proof of the Oppenheim conjecture by Grigory Margulis. Ratner's theorems have guided key advances in the understanding of the dynamics of unipotent flows. Their later generalizations provide ways to both sharpen the results and extend the theory to the setting of arbitrary semisimple algebraic groups over a local field.

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer.

In mathematics, the trace field of a linear group is the field generated by the traces of its elements. It is mostly studied for Kleinian and Fuchsian groups, though related objects are used in the theory of lattices in Lie groups, often under the name field of definition.

Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.

In Lie theory, an area of mathematics, the Kazhdan–Margulis theorem is a statement asserting that a discrete subgroup in semisimple Lie groups cannot be too dense in the group. More precisely, in any such Lie group there is a uniform neighbourhood of the identity element such that every lattice in the group has a conjugate whose intersection with this neighbourhood contains only the identity. This result was proven in the 1960s by David Kazhdan and Grigory Margulis.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

In mathematics, a Cannon–Thurston map is any of a number of continuous group-equivariant maps between the boundaries of two hyperbolic metric spaces extending a discrete isometric actions of the group on those spaces.

References

  1. Selberg, Atle (1960). "On discontinuous groups in higher-dimensional symmetric spaces". Contributions to functional theory. Tata Institut, Bombay. pp. 100–110.
  2. Weil, André (1960), "On discrete subgroups of Lie groups", Annals of Mathematics , Second Series, 72 (2): 369–384, doi:10.2307/1970140, ISSN   0003-486X, JSTOR   1970140, MR   0137792
  3. Weil, André (1962), "On discrete subgroups of Lie groups. II", Annals of Mathematics , Second Series, 75 (3): 578–602, doi:10.2307/1970212, ISSN   0003-486X, JSTOR   1970212, MR   0137793
  4. Garland, Howard; Raghunathan, M.~S. (1970). "Fundamental domains for lattices in R-rank 1 Lie groups". Annals of Mathematics. 92: 279–326. doi:10.2307/1970838. JSTOR   1970838.
  5. Goldman, William; Millson, John (1987), "Local rigidity of discrete groups acting on complex hyperbolic space", Inventiones Mathematicae, 88 (3): 495–520, Bibcode:1987InMat..88..495G, doi:10.1007/bf01391829, S2CID   15347622
  6. Gelander, Tsachik; Levit, Arie (2017), "Local rigidity of uniform lattices", Commentarii Mathematici Helvetici, arXiv: 1605.01693
  7. Bergeron, Nicolas; Gelander, Tsachik (2004). "A note on local rigidity". Geometriae Dedicata. Kluwer. 107: 111–131. arXiv: 1702.00342 . doi:10.1023/b:geom.0000049122.75284.06. S2CID   54064202.