Loss-of-pressure-control accident

Last updated

A loss-of-pressure-control accident (LOPA) is a mode of failure for a nuclear reactor that involves the pressure of the confined coolant falling below specification. [1] Most commercial types of nuclear reactor use a pressure vessel to maintain pressure in the reactor plant. This is necessary in a pressurized water reactor to prevent boiling in the core, which could lead to a nuclear meltdown. This is also necessary in other types of reactor plants to prevent moderators from having uncontrolled properties.

Contents

Pressure is controlled in a pressurized water reactor to ensure that the core itself does not reach its boiling point in which the water will turn into steam and rapidly decrease the heat being transferred from the fuel to the moderator. By a combination of heaters and spray valves, pressure is controlled in the pressurizer vessel which is connected to the reactor plant. Because the pressurizer vessel and the reactor plant are connected, the pressure of the steam space pressurizes the entire reactor plant to ensure the pressure is above that which would allow boiling in the reactor core. The pressurizer vessel itself may be maintained much hotter than the rest of the reactor plant to ensure pressure control, because in the liquid throughout the reactor plant, pressure applied at any point has an effect on the entire system, whereas the heat transfer is limited by ambient and other losses.

Causes of a loss of pressure control

Many failures in a reactor plant or its supporting auxiliaries could cause a loss of pressure control, including: [2]

Results of a loss of pressure control in a pressurized water reactor

When pressure control is lost in a reactor plant, depending on the level of heat being generated by the reactor plant, the heat being removed by the steam or other auxiliary systems, the initial pressure, and the normal operating temperature of the plant, it could take minutes or even hours for operators to see significant trends in core behaviour.

For whatever power level the reactor is currently operating at, a certain amount of enthalpy is present in the coolant. This enthalpy is proportional to temperature, therefore, the hotter the plant, the higher the pressure must be maintained to prevent boiling. When pressure drops to the saturation point, dryout in the coolant channels will occur.

As the reactor heats the water flowing through coolant channels, subcooled nucleate boiling takes place, in which some of the water becomes small bubbles of steam on the cladding of the fuel rods. These are then stripped from the fuel cladding and into the coolant channel by the flow of water. Normally, these bubbles collapse in the channel, transferring enthalpy to the surrounding coolant. When the pressure is below the saturation pressure for the given temperature, the bubbles will not collapse. As more bubbles accumulate in the channel and combine, the steam space within the channel becomes larger and larger until steam blankets the fuel cell walls. Once the fuel cell walls are blanketed with steam, the rate of heat transfer lowers significantly. Heat is not transferred out of the fuel rods as fast as it is being generated, potentially causing a nuclear meltdown. Because of this potential, all nuclear power plants have reactor protection systems that automatically shut down the reactor if the pressure in the primary circuit falls below a safe level, or if the subcooling margin falls below a safe level. Once the reactor is shut down, the rate at which residual heat is generated in the fuel rods is similar to that of an electric kettle, and the fuel rods can be safely cooled just by being submerged in water at normal atmospheric pressure.

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of early 2019, the IAEA reports there are 454 nuclear power reactors and 226 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Boiling water reactor</span> Type of nuclear reactor that directly boils water

A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet RBMK. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR), which is also a type of light water nuclear reactor. The main difference between a BWR and PWR is that in a BWR, the reactor core heats water, which turns to steam and then drives a steam turbine. In a PWR, the reactor core heats water, which does not boil. This hot water then exchanges heat with a lower pressure system, which turns water into steam that drives the turbine. The BWR was developed by the Argonne National Laboratory and General Electric (GE) in the mid-1950s. The main present manufacturer is GE Hitachi Nuclear Energy, which specializes in the design and construction of this type of reactor.

<span class="mw-page-title-main">Nuclear meltdown</span> Severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the United States Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.

<span class="mw-page-title-main">RBMK</span> A high-power channel-type nuclear reactor

The RBMK is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union. The name refers to its design where, instead of a large steel pressure vessel surrounding the entire core, the core is surrounded by a cylindrical annular steel tank inside a concrete vault and each fuel assembly is enclosed in an individual 8 cm (inner) diameter pipe. The channels also contain the coolant, and are surrounded by graphite.

The A2W reactor is a naval nuclear reactor used by the United States Navy to provide electricity generation and propulsion on warships. The A2W designation stands for:

<span class="mw-page-title-main">Loss-of-coolant accident</span> Event where coolant is lost in a nuclear reactor

A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA.

In nuclear engineering, the void coefficient is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids form in the reactor moderator or coolant. Net reactivity in a reactor is the sum total of all these contributions, of which the void coefficient is but one. Reactors in which either the moderator or the coolant is a liquid typically will have a void coefficient value that is either negative or positive. Reactors in which neither the moderator nor the coolant is a liquid will have a void coefficient value equal to zero. It is unclear how the definition of 'void' coefficient applies to reactors in which the moderator/coolant is neither liquid nor gas.

<span class="mw-page-title-main">Light-water reactor</span> Type of nuclear reactor that uses normal water

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order to achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

<span class="mw-page-title-main">Supercritical water reactor</span> Type of nuclear reactor whose water operates at supercritical pressure

The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and must not be confused with the concept of criticality of the nuclear reactor.

<span class="mw-page-title-main">VVER</span> Soviet / Russian nuclear reactor type

The water-water energetic reactor (WWER), or VVER is a series of pressurized water reactor designs originally developed in the Soviet Union, and now Russia, by OKB Gidropress. The idea of such a reactor was proposed at the Kurchatov Institute by Savely Moiseevich Feinberg. VVER were originally developed before the 1970s, and have been continually updated. As a result, the name VVER is associated with a wide variety of reactor designs spanning from generation I reactors to modern generation III+ reactor designs. Power output ranges from 70 to 1300 MWe, with designs of up to 1700 MWe in development. The first prototype VVER-210 was built at the Novovoronezh Nuclear Power Plant.

<span class="mw-page-title-main">Economic Simplified Boiling Water Reactor</span> Nuclear reactor design

The Economic Simplified Boiling Water Reactor (ESBWR) is a passively safe generation III+ reactor design derived from its predecessor, the Simplified Boiling Water Reactor (SBWR) and from the Advanced Boiling Water Reactor (ABWR). All are designs by GE Hitachi Nuclear Energy (GEH), and are based on previous Boiling Water Reactor designs.

KS 150 is a Gas Cooled Reactor using Heavy Water as a moderator (GCHWR) nuclear reactor design. A single example, A-1, was constructed at the Bohunice Nuclear Power Plant in Jaslovské Bohunice, Czechoslovakia. The power plant suffered a series of accidents, the worst being an accident on February 22, 1977, rated INES-4. Since 1979 the plant has been undergoing decommissioning.

The three primary objectives of nuclear reactor safety systems as defined by the U.S. Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition and prevent the release of radioactive material.

Pressurizer (nuclear power)

A pressurizer is a component of a pressurized water reactor. The basic design of the pressurized water reactor includes a requirement that the coolant (water) in the reactor coolant system must not boil. Put another way, the coolant must remain in the liquid state at all times, especially in the reactor vessel. To achieve this, the coolant in the reactor coolant system is maintained at a pressure sufficiently high that boiling does not occur at the coolant temperatures experienced while the plant is operating or in any analyzed possible transient state. To pressurize the coolant system to a higher pressure than the vapor pressure of the coolant at operating temperatures, a separate pressurizing system is required. This is in the form of the pressurizer.

A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.

Boiling water reactor safety systems are nuclear safety systems constructed within boiling water reactors in order to prevent or mitigate environmental and health hazards in the event of accident or natural disaster.

<span class="mw-page-title-main">GE BWR</span>

General Electric's BWR product line of boiling water reactors represents the designs of a relatively large (~18%) percentage of the commercial fission reactors around the world.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

References

  1. Pitta, Terra (2015). Catastrophe: A Guide to World's Worst Industrial Disasters. Vij Books India Pvt Ltd. ISBN   9789385505171.
  2. Hubbell, M. W. (2011). The Fundamentals of Nuclear Power Generation: Questions & Answers. Author House. ISBN   9781463426583.