MA-5A

Last updated
MA-5A
Manufacturer Lockheed Martin
Country of origin United States
Used on Atlas II
General characteristics
Height3.43 metres (11.3 ft)
Diameter3.05 metres (10.0 ft)
Gross mass4,187 kilograms (9,231 lb)
Derived from MA-5
MA-5A
Powered by2 RS-56-OBA
Maximum thrust2,100 kN (470,000 lbf)
Specific impulse 296 seconds (2.90 km/s)
Propellant LOX/RP-1
Launch history
StatusRetired

MA-5A was an American liquid fueled rocket stage. It was manufactured by Lockheed Martin for use on the Atlas II rocket, derived from the MA-5 used on the Atlas I.

Design

MA-5A functioned as the "half stage" in the Atlas's "stage-and-a-half" design, meaning they functioned as a booster attached to a central sustainer core, but did not include their own fuel tanks. Instead, fuel was drained out of the tanks of the sustainer core, until partway through the launch the booster segment was jettisoned. Similar to the booster segments on previous Atlas rockets, MA-5A consisted of a thrust structure with attachment points and fuel lines for two RS-56-OBA rocket engines, each contained in a nacelle for aerodynamic reasons. [1] The middle was left empty to accommodate the RS-56-OSA engine of the sustainer stage. The two booster engines shared a common gas generator, but separate turbopumps, combustion chambers, and other hardware. [2] The stage also contains ten bottles of pressurized helium, used to drive the pneumatics for the engines and for tank pressurization. On the Atlas IIAS configuration, MA-5A also featured attachment points for four Castor 4A solid rocket boosters. [1] [3]

MA-5A was based on the design of the previous MA-5 stage, used on Atlas I. The main difference between the two designs was the replacement of the MA-5's two LR-89-7 engines with RS-56-OSAs. [4]

Related Research Articles

The SM-65 Atlas was the first operational intercontinental ballistic missile (ICBM) developed by the United States and the first member of the Atlas rocket family. It was built for the U.S. Air Force by the Convair Division of General Dynamics at an assembly plant located in Kearny Mesa, San Diego. Atlas became operational in October 1959, but was soon made obsolete as an ICBM by new development, and was retired from this role by 1965.

Space Shuttle Solid Rocket Booster Solid propellant rocket used to launch Space Shuttle orbiter.

The Space Shuttle Solid Rocket Booster was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight and provided 85% of the Space Shuttle's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned and parachuted into the Atlantic Ocean where they were recovered, examined, refurbished, and reused.

Delta IV Active expendable launch system in the Delta rocket family

Delta IV is a group of five expendable launch systems in the Delta rocket family introduced in the early 2000s. Originally designed by Boeing's Defense, Space and Security division for the Evolved Expendable Launch Vehicle (EELV) program, the Delta IV became a United Launch Alliance (ULA) product in 2006. The Delta IV is primarily a launch vehicle for United States Air Force (USAF) military payloads, but has also been used to launch a number of United States government non-military payloads and a single commercial satellite.

Space Shuttle external tank component of the Space Shuttle launch vehicle

The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three RS-25 main engines in the orbiter. The ET was jettisoned just over 10 seconds after main engine cut-off (MECO) and it re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean, away from shipping lanes and were not recovered.

RS-25 Space Shuttle Main Engine

The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle. NASA is planning to continue using the RS-25 on the Space Shuttle's successor, the Space Launch System (SLS).

Titan IV Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

Titan IIIC Expendable launch system used by the US Air Force

The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight (ATS-6) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID, was launched only from Vandenberg AFB.

Atlas II

Atlas II was a member of the Atlas family of launch vehicles, which evolved from the successful Atlas missile program of the 1950s. It was designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. Sixty-three launches of the Atlas II, IIA and IIAS models were carried out between 1991 and 2004; all sixty-three launches were successes, making the Atlas II the most reliable launch system in history. The Atlas line was continued by the Atlas III, used between 2000 and 2005, and the Atlas V which is still in use.

A liquid rocket booster (LRB) uses liquid fuel and oxidizer to give a liquid-propellant or hybrid rocket an extra boost at take-off, and/or increase the total payload that can be carried. It is attached to the side of a rocket. Unlike solid rocket boosters, LRBs can be throttled down if the engines are designed to allow it, and can be shut down safely in an emergency for additional escape options in human spaceflight.

Staged combustion cycle Rocket engine operation method

The staged combustion cycle is a power cycle of a bipropellant rocket engine. In the staged combustion cycle, propellant flows through multiple combustion chambers, and is thus combusted in stages. The main advantage relative to other rocket engine power cycles is high fuel efficiency, measured through specific impulse, while its main disadvantage is engineering complexity.

Atlas-Centaur Family of space launch vehicles

The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. Launches were conducted from Launch Complex 36 at the Cape Canaveral Air Force Station (CCAFS) in Florida.

RD-180 Russian rocket engine

The RD-180 is a rocket engine designed and built in Russia. It features a dual combustion chamber, dual-nozzle design and is fueled by a RP-1/LOX mixture. Currently, RD-180 engines are used for the first stage of the American Atlas V launch vehicle.

Modular rocket Rocket with components that can be easily added, changed or removed for specific mission requirements

A modular rocket is a type of multistage rocket which features components that can be interchanged for specific mission requirements. Several such rockets use similar concepts such as unified modules to minimize expenses on manufacturing, transportation and for optimization of support infrastructure for flight preparations.

Ares I Canceled NASA rocket key to the Constellation program

Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the "Crew Launch Vehicle" (CLV).

Castor (rocket stage) Solid-fuel orbital vehicle component

The Castor family of solid-fuel rocket stages and boosters built by Thiokol and used on a variety of launch vehicles. They were initially developed as the second-stage motor of the Scout rocket. The design was based on the MGM-29 Sergeant, a surface-to-surface missile developed for the United States Army at the Jet Propulsion Laboratory.

Atlas (rocket family) Family of American missiles and space launch vehicles

Atlas is a family of US missiles and space launch vehicles that originated with the SM-65 Atlas. The Atlas intercontinental ballistic missile (ICBM) program was initiated in the late 1950s under the Convair Division of General Dynamics. Atlas was a liquid propellant rocket burning RP-1 fuel with liquid oxygen in three engines configured in an unusual "stage-and-a-half" or "parallel staging" design: two outboard booster engines were jettisoned along with supporting structures during ascent, while the center sustainer engine, propellant tanks and other structural elements remained connected through propellant depletion and engine shutdown.

RS-27

The RS-27 was a liquid-propellant rocket engine developed in 1974 by Rocketdyne to replace the aging MB-3 in the Delta. Incorporating components of the venerable MB-3 and the H-1 designs, the RS-27 was a modernized version of the basic design used for two decades. It was used to power the first stage of the Delta 2000, 3000, 5000, and the first model of the Delta II, the Delta 6000.

RS-56 was an American liquid-fueled rocket engine, developed by Rocketdyne. RS-56 was derived from the RS-27 rocket engine, which itself is derived from the Rocketdyne H-1 rocket engine used in the Saturn I and Saturn IB. Two variants of this engine were built, both for use on the Atlas II rocket series. The first, RS-56-OBA, was a booster engine, while the RS-56-OSA was designed for use as a sustainer and produced lower thrust but at a higher specific impulse.

MA-5 was an American liquid fueled rocket stage, developed by Lockheed Martin for use on the Atlas I rocket.

Studied Space Shuttle designs Launch vehicle study

During the lifetime of Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These studies included different ways to increase shuttle payload capability, crew capacity, and developing standalone reusable launch vehicles. A large focus of the program was towards new shuttle boosters and an upgrades to the external tank but also looked to expand NASA's ability to launch deep space missions and build large modular space stations. Many of these concepts and studies would shape the concepts and programs of the 2000s such as Constellation, Orbital Space Plane Program, and Artemis program.

References

  1. 1 2 "Atlas Launch System Payload Planner's Guide" (PDF). Lockheed Martin. Archived from the original (PDF) on 21 April 2015. Retrieved 9 January 2016.
  2. "Atlas IIA(S) Data Sheet". Space Launch Report. Retrieved 9 January 2015.
  3. "Atlas IIAS". Astronautix. Retrieved 9 January 2016.
  4. "MA-5A". Astronautix. Retrieved 10 January 2016.