This article may be too technical for most readers to understand.(August 2021) |
MAXEkSAT is a problem in computational complexity theory that is a maximization version of the Boolean satisfiability problem 3SAT. In MAXEkSAT, each clause has exactly k literals, each with distinct variables, and is in conjunctive normal form. These are called k-CNF formulas. The problem is to determine the maximum number of clauses that can be satisfied by a truth assignment to the variables in the clauses.
We say that an algorithm A provides an α-approximation to MAXEkSAT if, for some fixed positive α less than or equal to 1, and every kCNF formula φ, A can find a truth assignment to the variables of φ that will satisfy at least an α-fraction of the maximum number of satisfiable clauses of φ.
Because the NP-hard k-SAT problem (for k ≥ 3) is equivalent to determining if the corresponding MAXEkSAT instance has a value equal to the number of clauses, MAXEkSAT must also be NP-hard, meaning that there is no polynomial time algorithm unless P=NP. A natural next question, then, is that of finding approximate solutions: what's the largest real number α < 1 such that some explicit P (complexity) algorithm always finds a solution of size α·OPT, where OPT is the (potentially hard to find) maximizing assignment. While the algorithm is efficient, it's not obvious how to remove its dependence on randomness. There are problems related to the satisfiability of conjunctive normal form Boolean formulas.
There is a simple randomized polynomial-time algorithm that provides a -approximation to MAXEkSAT: independently set each variable to true with probability 1/2, otherwise set it to false.
Any given clause c is unsatisfied only if all of its k constituent literals evaluates to false. Because each literal within a clause has a 1⁄2 chance of evaluating to true independently of any of the truth value of any of the other literals, the probability that they are all false is . Thus, the probability that c is indeed satisfied is , so the indicator variable (that is 1 if c is true and 0 otherwise) has expectation . The sum of all of the indicator variables over all clauses is , so by linearity of expectation we satisfy a fraction of the clauses in expectation. Because the optimal solution can't satisfy more than all of the clauses, we have that , so the algorithm finds a approximation to the true optimal solution in expectation.
Despite its high expectation, this algorithm may occasionally stumble upon solutions of value lower than the expectation we computed above. However, over a large number of trials, the average fraction of satisfied clauses will tend towards . This implies two things:
A more robust analysis (such as that in [1] ) shows that we will, in fact, satisfy at least a -fraction of the clauses a constant fraction of the time (depending only on k), with no loss of .
While the above algorithm is efficient, it's not obvious how to remove its dependence on randomness. Trying out all possible random assignments is equivalent to the naive brute force approach, so may take exponential time. One clever way to derandomize the above in polynomial time relies on work in error correcting codes, satisfying a fraction of the clauses in time polynomial in the input size (although the exponent depends on k).
We need one definition and two facts to find the algorithm.
is an ℓ-wise independent source if, for a uniformly chosen random (x1, x2, ..., xn) ∈ S,x1, x2, ..., xn are ℓ-wise independent random variables.
Note that such an assignment can be found among elements of any ℓ-wise independent source over n binary variables. This is easier to see once you realize that an ℓ-wise independent source is really just any set of binary vectors over {0, 1}n with the property that all restrictions of those vectors to ℓ co-ordinates must present the 2ℓ possible binary combinations an equal number of times.
Recall that BCH2,m,d is an linear code.
There exists an ℓ-wise independent source of size , namely the dual of a BCH2,log n,ℓ+1 code, which is a linear code. Since every BCH code can be presented as a polynomial-time computable restriction of a related Reed Solomon code, which itself is strongly explicit, there is a polynomial-time algorithm for finding such an assignment to the xi's. The proof of fact 2 can be found at Dual of BCH is an independent source.
The algorithm works by generating BCH2,log n,ℓ+1, computing its dual (which as a set is an ℓ-wise independent source) and treating each element (codeword) of that source as a truth assignment to the n variables in φ. At least one of them will satisfy at least 1 − 2−ℓ of the clauses of φ, whenever φ is in kCNF form, k = ℓ.
There are many problems related to the satisfiability of conjunctive normal form Boolean formulas.
In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable. On the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is unsatisfiable. For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable.
Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future. Another concern is that noise in quantum circuits may undermine results, requiring additional qubits for quantum error correction.
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time.
In complexity theory, PP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error probability of less than 1/2 for all instances. The abbreviation PP refers to probabilistic polynomial time. The complexity class was defined by Gill in 1977.
In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.
In computational complexity theory, a function problem is a computational problem where a single output is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'.
In formal logic, Horn-satisfiability, or HORNSAT, is the problem of deciding whether a given set of propositional Horn clauses is satisfiable or not. Horn-satisfiability and Horn clauses are named after Alfred Horn.
In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.
In complexity theory, the Karp–Lipton theorem states that if the Boolean satisfiability problem (SAT) can be solved by Boolean circuits with a polynomial number of logic gates, then
MAX-3SAT is a problem in the computational complexity subfield of computer science. It generalises the Boolean satisfiability problem (SAT) which is a decision problem considered in complexity theory. It is defined as:
In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.
In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.
The #P-completeness of 01-permanent, sometimes known as Valiant's theorem, is a mathematical proof about the permanent of matrices, considered a seminal result in computational complexity theory. In a 1979 scholarly paper, Leslie Valiant proved that the computational problem of computing the permanent of a matrix is #P-hard, even if the matrix is restricted to have entries that are all 0 or 1. In this restricted case, computing the permanent is even #P-complete, because it corresponds to the #P problem of counting the number of permutation matrices one can get by changing ones into zeroes.
In theoretical computer science, the algorithmic Lovász local lemma gives an algorithmic way of constructing objects that obey a system of constraints with limited dependence.
In computer science, the Sharp Satisfiability Problem is the problem of counting the number of interpretations that satisfy a given Boolean formula, introduced by Valiant in 1979. In other words, it asks in how many ways the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. For example, the formula is satisfiable by three distinct boolean value assignments of the variables, namely, for any of the assignments, , and, we have
In computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by Impagliazzo & Paturi (1999). It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, . More precisely, the usual form of the hypothesis asserts the existence of a number such that all algorithms that correctly solve this problem require time at least The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement. It implies that many computational problems are equivalent in complexity, in the sense that if one of them has a subexponential time algorithm then they all do, and that many known algorithms for these problems have optimal or near-optimal time complexity.
In computational complexity theory, a branch of computer science, the Max/min CSP/Ones classification theorems state necessary and sufficient conditions that determine the complexity classes of problems about satisfying a subset S of boolean relations. They are similar to Schaefer's dichotomy theorem, which classifies the complexity of satisfying finite sets of relations; however, the Max/min CSP/Ones classification theorems give information about the complexity of approximating an optimal solution to a problem defined by S.
The Boolean satisfiability problem can be stated formally as: given a Boolean expression with variables, finding an assignment of the variables such that is true. It is seen as the canonical NP-complete problem. While no efficient algorithm is known to solve this problem in the general case, there are certain heuristics, informally called 'rules of thumb' in programming, that can usually help solve the problem reasonably efficiently.