MN18

Last updated
MN18
Observation data
Epoch J2000       Equinox J2000
Constellation Circinus
Right ascension 15h 16m 41.001s [1]
Declination −58° 22 25.96 [1]
Apparent magnitude  (V)13.4
Characteristics
Evolutionary stage Blue supergiant
Spectral type B1Ia [2]
Astrometry
Parallax (π)0.1714 ± 0.0192  mas [1]
Distance 18,200  ly
(5,600 [2]   pc)
Absolute magnitude  (MV)−6.8 [2]
Details
Radius 38.5 [2]   R
Luminosity 263,000 [2]   L
Temperature 21,100 [2]   K
Rotational velocity (v sin i)90 [2]  km/s
Age 5.5 [2]   Myr
Other designations
[GKF2010] MN18, IRAS 15127-5811, 2MASS  J15164101-5822260
Database references
SIMBAD data

MN18 is a blue supergiant in the constellation of Circinus, about 5.6 kiloparsecs away, or about 18,300 light years away, likely in the open cluster Lynga 3. MN18 is surrounded by a bipolar nebula, quite uncommon around blue supergiants, and some other examples of blue supergiants with bipolar nebulae include HD 168625, Sher 25 and SBW 1. [2]

Contents

Properties

Fitting the star's spectrum with synthetic models suggests that it has a temperature of around 21,100 K. Assuming an absolute magnitude of -6.8 (typical for B1 supergiants) and its temperature, it probably has a luminosity around 260,000 times that of the Sun, and so it's probably about 38.5 times the size of the Sun. These parameters can be mostly replicated with a model of a 5.5 million year old star with an initial mass of 30 solar masses, what MN18's initial conditions might have been, which means that MN18 might be about 5.5 million years old. However, that model has significantly different carbon, nitrogen and oxygen abundances compared to MN18, for example, the nitrogen abundance is much lower in the synthetic model than in MN18. [2]

The star is heavily reddened, with E(B-V) of 1.97, because of the huge amounts of dust between it and us. Also because of this dust, it is heavily obscured with a visual extinction of 6.4222 magnitudes. This means that only 1/371 of its light reaches us, and the rest (most of the light) is absorbed by the aforementioned dust. [2]

Bipolar Nebula

MN18's bipolar nebula measures approximately 1.7 by 2.5 arcminutes across, and appears as two lobes extending for about 70 arcsec in the northwest and southeast directions from a bright ring (the most visible section) centred on MN18. At a distance of 5.6 kpc, the extent of the lobes from the central star is about 1.9 parsecs (about 6.2 light years), which means that this bipolar nebula's diameter should be about 3.8 parsecs (about 12.4 light years). At a distance of 5.6 kpc, the ring would have a radius of 0.29 parsecs (about 0.95 light years). This, combined with the expanding velocity of the ring suggests a kinematic age of around 37,000 years. [2]

Origin

The formation of the ring surrounding the star was probably due to MN18's past very high rotational velocity. Such high rotational velocities likely means that MN18 was or still is a member of a close binary system. If this is the case, then MN18 has likely suffered a lot of angular momentum loss on a time scale less than the age of the ring, suggested by its presently moderate rotational velocity, which could be explained by a strong magnetic field and a high mass loss rate, possible in merging binary systems because of the strong shear created. [2]

Arc

There is a bright arc-like feature attached to the southwestern edge of the southeastern lobe of the nebula surrounding MN18, and there is a star within this arc, near its apex. This star is listed as a member of Lynga 3 as number 11 (hence its designation of Lynga 3-11). The arc-like feature is likely created from interaction between Lynga 3-11's stellar wind and MN18's bipolar nebula, evidenced by enhanced brightness near the supposed place of contact between nebula and stellar wind. If this is true, than Lynga 3-11 should have a strong stellar wind, i.e. an OB star. Its spectral type (derived from its different magnitudes in different wavelengths, recorded by 2MASS) is estimated to be O6V, assuming a distance of 5.6 kpc, but it could be earlier or later depending on its exact distance. [2]

Cluster Membership

MN18 is a possible member of the open cluster Lynga 3, however as Lynga 3 appeared to be an older cluster (its age is estimated to be about 832 million years old, compared to MN18's 5.5-10 million years old), this membership was doubted. Then a nearby star, 2MASS J15164297-5822197, was discovered to be a massive late-O or early-B type star, i.e. hotter than MN18. The presence of a massive and so rare star so close to MN18 suggests that they could be in the same star cluster, i.e. Lynga 3. This star could be either 4.7 or 7 kpc away, which is compatible with MN18's 5.6 kpc's margin of error (+1.5 -1.2 kpc), supporting the supposition that both stars might be members of the same cluster. However, the mean radial velocity of the spectral lines of 2MASS J15164297-5822197 is more than twice that of MN18. Although this difference might indicate that the two stars are unrelated to each other and are simply projected by chance along the same line-of-sight, it could also mean that this star is a massive binary. [2]

The presence of Lynga 3-11, likely another massive star, is also potential evidence for Lynga 3's young cluster status, but more observations of this star and other stars listed as members of Lynga 3 are required to check whether or not they are part of MN18's parent cluster, Lynga 3. [2]

Related Research Articles

<span class="mw-page-title-main">Ara (constellation)</span> Constellation in the southern celestial hemisphere

Ara is a southern constellation between Scorpius, Telescopium, Triangulum Australe, and Norma. It was one of the Greek bulk described by the 2nd-century astronomer Ptolemy, and it remains one of the 88 modern constellations designated by the International Astronomical Union.

<span class="mw-page-title-main">Sagitta</span> Constellation in the northern celestial hemisphere

Sagitta is a dim but distinctive constellation in the northern sky. Its name is Latin for 'arrow', not to be confused with the significantly larger constellation Sagittarius 'the archer'. It was included among the 48 constellations listed by the 2nd-century astronomer Ptolemy, and it remains one of the 88 modern constellations defined by the International Astronomical Union. Although it dates to antiquity, Sagitta has no star brighter than 3rd magnitude and has the third-smallest area of any constellation.

<span class="mw-page-title-main">Eta Carinae</span> Stellar system in the constellation Carina

Eta Carinae, formerly known as Eta Argus, is a stellar system containing at least two stars with a combined luminosity greater than five million times that of the Sun, located around 7,500 light-years distant in the constellation Carina. Previously a 4th-magnitude star, it brightened in 1837 to become brighter than Rigel, marking the start of its so-called "Great Eruption". It became the second-brightest star in the sky between 11 and 14 March 1843 before fading well below naked-eye visibility after 1856. In a smaller eruption, it reached 6th magnitude in 1892 before fading again. It has brightened consistently since about 1940, becoming brighter than magnitude 4.5 by 2014.

<span class="mw-page-title-main">V838 Monocerotis</span> Star in the constellation Monoceros

V838 Monocerotis is a spectroscopic binary star system in the constellation Monoceros about 19,000 light years from the Sun. The previously unremarked star was observed in early 2002 experiencing a major outburst, and was one of the largest known stars for a short period following the outburst. Originally believed to be a typical nova eruption, it was then identified as the first of a new class of eruptive variables known as luminous red novae. The reason for the outburst is still uncertain, but is thought to have been a merger of two stars within a triple system.

<span class="mw-page-title-main">Carina Nebula</span> Interstellar clouds in the constellation Carina

The Carina Nebula or Eta Carinae Nebula is a large, complex area of bright and dark nebulosity in the constellation Carina, located in the Carina–Sagittarius Arm of the Milky Way galaxy. The nebula is approximately 8,500 light-years (2,600 pc) from Earth.

<span class="mw-page-title-main">Homunculus Nebula</span> Bipolar emission nebula in the constellation Carina

The Homunculus Nebula is a bipolar emission and reflection nebula surrounding the massive star system Eta Carinae, about 7,500 light-years from Earth. The nebula is embedded within the much larger Carina Nebula, a large star-forming H II region. From the Latin homunculus meaning Little Man, the nebula consists of gas which was ejected from Eta Carinae during the Great Eruption, which occurred ~7,500 years before it was observed on Earth, from 1838 to 1845. It also contains dust which absorbs much of the light from the extremely luminous central stellar system and re-radiates it as infra-red (IR). It is the brightest object in the sky at mid-IR wavelengths.

<span class="mw-page-title-main">Lambda Tauri</span> Triple star system in the constellation Taurus

Lambda Tauri is a triple star system in the constellation Taurus. In the Calendarium of Al Achsasi Al Mouakket, this star was designated Sadr al Tauri, which was translated into Latin as Pectus Tauri, meaning "the bull chest". In 1848, the light from this system was found to vary periodically and it was determined to be an eclipsing binary system—the third such discovered. The components of this system have a combined apparent visual magnitude of +3.37 at its brightest, making it one of the brighter members of the constellation. Based upon parallax measurements from the Hipparcos mission, the distance to this system is approximately 480 light-years.

<span class="mw-page-title-main">Westerlund 1</span> Super star cluster in the Milky Way Galaxy

Westerlund 1 is a compact young super star cluster about 3.8 kpc away from Earth. It is thought to be the most massive young star cluster in the Milky Way, and was discovered by Bengt Westerlund in 1961 but remained largely unstudied for many years due to high interstellar absorption in its direction. In the future, it will probably evolve into a globular cluster.

<span class="mw-page-title-main">AG Carinae</span> Luminous variable star in the constellation Carina

AG Carinae is a star in the constellation Carina. It is classified as a luminous blue variable (LBV) and is one of the most luminous stars in the Milky Way. The great distance and intervening dust mean that the star is not usually visible to the naked eye; its apparent brightness varies erratically between magnitude 5.7 and 9.0.

Delta1 Lyrae, its name Latinized from δ1 Lyrae, is a binary star system in the northern constellation of Lyra. It is dimly visible to the naked eye at night with a combined apparent visual magnitude of 5.56. The system is located at a distance of approximately 1,160 light years from the Sun based on parallax, but is drifting closer with a radial velocity of −26 km/s. O. J. Eggen originally included this as a candidate member of the proposed Delta Lyrae cluster.

<span class="mw-page-title-main">WR 22</span> Binary star in the constellation Carina

WR 22, also known as V429 Carinae or HR 4188, is an eclipsing binary star system in the constellation Carina. The system contains a Wolf-Rayet (WR) star that is one of the most massive and most luminous stars known, and is also a bright X-ray source due to colliding winds with a less massive O class companion. Its eclipsing nature and apparent magnitude make it very useful for constraining the properties of luminous hydrogen-rich WR stars.

<span class="mw-page-title-main">WR 124</span> Star in the constellation Sagitta

WR 124 is a Wolf–Rayet star in the constellation of Sagitta surrounded by a ring nebula of expelled material known as M1-67. It is one of the fastest runaway stars in the Milky Way with a radial velocity around 200 km/s. It was discovered by Paul W. Merrill in 1938, identified as a high-velocity Wolf–Rayet star. It is listed in the General Catalogue of Variable Stars as QR Sagittae with a range of 0.08 magnitudes.

<span class="mw-page-title-main">WR 25</span> Binary star system in the constellation Carina

WR 25 is a binary star system in the turbulent star-forming region the Carina Nebula, about 6,800 light-years from Earth. It contains a Wolf-Rayet star and a hot luminous companion and is a member of the Trumpler 16 cluster. The name comes from the Catalogue of Galactic Wolf–Rayet Stars.

LSS 4067, also known as CD−38°11748, is an O-type blue supergiant star located in the constellation Scorpius, very close to the galactic plane. It is part of the open cluster HM 1, although its distance is not well known; it may be anywhere between 9,500 and 12,700 light years away from the Earth. Despite being a blue supergiant, it is extremely reddened by interstellar extinction, so its apparent magnitude is brighter for longer-wavelength passbands. Without the extinction, it is estimated that LS 4067 would be 5.8 magnitudes brighter, a naked eye star with an apparent magnitude of 5.3.

<span class="mw-page-title-main">V1429 Aquilae</span> Star in the constellation Aquila

V1429 Aquilae is a candidate luminous blue variable multiple star system located in the constellation of Aquila. It is often referred to by its Mount Wilson Observatory catalog number as MWC 314. It is a hot luminous star with strong emission lines in its spectrum.

<span class="mw-page-title-main">IRAS 19475+3119</span> Nebula in the constellation Cygnus

IRAS 19475+3119 is a protoplanetary nebula in the constellation of Cygnus, 15,000 light-years away. The central star, V2513 Cygni, is an F-type post-AGB star.

<span class="mw-page-title-main">68 Cygni</span> Star in the constellation Cygnus

68 Cygni is the Flamsteed designation for a star in the constellation Cygnus. Located approximately 1,400 parsecs (4,600 ly) distant, the star is a hot blue giant of spectral type O7.5IIIn( ), a massive star that is likely currently expanding to become a supergiant. The star is surrounded by a ring-shaped nebula named S 119.

<span class="mw-page-title-main">HR 5171</span> Star in the constellation Centaurus

V766 Centauri, also known as HR 5171, is a yellow hypergiant in the constellation Centaurus, either 5,000 or 12,000 light years from Earth. It is said to be either an extreme red supergiant (RSG) or recent post-red supergiant (Post-RSG) yellow hypergiant (YHG), both of which suggest it is one of the largest known stars. The star's diameter is uncertain but likely to be between 1,100 and 1,600 times that of the Sun. It was previously thought to be a contact binary, sharing a common envelope of material with a smaller yellow supergiant and secondary star, the two orbiting each other every 1,304 ± 6 days. However this has since been deemed unlikely. An optical companion, HR 5171B, may or may not be at the same distance as the yellow supergiant.

IRC −10414 is a red supergiant and runaway star in the constellation Scutum, a rare case of a red supergiant with a bow shock.

<span class="mw-page-title-main">Westerlund 1-237</span> Possible red supergiant in the Westerlund 1 super star cluster

Westerlund 1-237 or Westerlund 1 BKS B is a possible red supergiant (RSG) in the constellation of Ara. It is one out of four known red supergiants in the Westerlund 1 super star cluster, although its outlying position, spectrum, and parallax, suggest it could be a foreground giant. As a red supergiant, it would be one of the largest known stars and one of the most luminous of its type.

References

  1. 1 2 3 Gaia Collaboration (2018-04-01). "VizieR Online Data Catalog: Gaia DR2 (Gaia Collaboration, 2018)". VizieR Online Data Catalog. 1345. Bibcode:2018yCat.1345....0G.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y. (2015-11-01). "The blue supergiant MN18 and its bipolar circumstellar nebula". Monthly Notices of the Royal Astronomical Society. 454 (1): 219–237. arXiv: 1508.06288 . Bibcode:2015MNRAS.454..219G. doi:10.1093/mnras/stv1995. ISSN   0035-8711.