Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Circinus |
Right ascension | 15h 20m 40.85s [1] |
Declination | −57° 10′ 00.1″ [1] |
Apparent magnitude (V) | 21.40 [2] |
Characteristics | |
Spectral type | B5–A0 I [3] |
Variable type | HMXB [4] |
Astrometry | |
Distance | 31000+2600 −3300 ly (9400+800 −1000 [5] pc) |
Orbit [3] | |
Period (P) | 16.68 ± 0.15 d |
Eccentricity (e) | 0.45 ± 0.07 |
Periastron epoch (T) | JD 2453473.8 ± 0.4 |
Argument of periastron (ω) (secondary) | 2 ± 12° |
Semi-amplitude (K1) (primary) | 25 ± 2 km/s |
Other designations | |
Database references | |
SIMBAD | data |
Circinus X-1 is an X-ray binary star system that includes a neutron star. Observation of Circinus X-1 in July 2007 revealed the presence of X-ray jets normally found in black hole systems; it is the first of the sort to be discovered that displays this similarity to black holes. Circinus X-1 may be among the youngest X-ray binaries observed.
On June 14, 1969, an Aerobee 150 rocket, launched from Natal, Rio Grande do Norte, Brazil, obtained X-ray data during a scan of the Norma-Lupus-Circinus region that detected a well-isolated source at ℓ = 321.4±0.9° b = -0.5±2° (galactic), RA 15h 14m Dec −57° 49′ within the constellation Circinus and referred to as Circinus XR-1 (Cir XR-1). [6] The distance of Circinus X-1 was not well established, with a low estimate of 13,400 light years [7] and high estimate of 26,000 light years. [8]
On June 23, 2015, an article published on NASA's Chandra X-Ray Observatory's website, revealed that an international team of astronomers has succeeded in determining its distance from Earth with more precision - via a method of triangulation of X-ray light emitted by the star, echoing through stellar clouds and interstellar dust - as being about 30,700 light-years. [9]
A 16.6 day X-ray period was found by Kaluzienski et al. [11] The X-ray source is assumed to be a neutron star as part of a low-mass X-ray binary (LMXB), type-I X-ray burster. [12] The X-ray and radio nebulae surrounding Circinus X-1 have properties consistent with a young supernova remnant. This rare case of an X-ray binary apparently associated with a supernova remnant suggests the binary is very young on cosmic time scales, possibly less than 4600 years old. [13] An association of Circinus X-1 with a different nearby supernova remnant, G321.9-0.3, has been ruled out. [12]
The binary nature of Cir X-1 has been established. [14] The binary's radio component and a possible visual counterpart were identified by Whelan et al. [15] Its infrared counterpart was located and found to flare with a 16.6-day period by Glass. [16] A (heavily reddened) precise optical counterpart (now known as BR Cir) was identified by Moneti. [17]
A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.
SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987 and was designated "SN 1987A" as the first supernova discovered that year. Its brightness peaked in May of that year, with an apparent magnitude of about 3.
In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, being the brightest and most extreme explosive events in the entire universe, as NASA describes the bursts as the "most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, an "afterglow" is emitted, which is longer lived and usually emitted at longer wavelengths.
A Thorne–Żytkow object, also known as a hybrid star, is a conjectured type of star wherein a red giant or red supergiant contains a neutron star at its core, formed from the collision of the giant with the neutron star. Such objects were hypothesized by Kip Thorne and Anna Żytkow in 1977. In 2014, it was discovered that the star HV 2112, located in the Small Magellanic Cloud (SMC), was a strong candidate. Another possible candidate is the star HV 11417, also located in the SMC.
Norma is a small constellation in the Southern Celestial Hemisphere between Ara and Lupus, one of twelve drawn up in the 18th century by French astronomer Nicolas-Louis de Lacaille and one of several depicting scientific instruments. Its name is Latin for normal, referring to a right angle, and is variously considered to represent a rule, a carpenter's square, a set square or a level. It remains one of the 88 modern constellations.
Circinus is a small, faint constellation in the southern sky, first defined in 1756 by the French astronomer Nicolas-Louis de Lacaille. Its name is Latin for compass, referring to the drafting tool used for drawing circles. Its brightest star is Alpha Circini, with an apparent magnitude of 3.19. Slightly variable, it is the brightest rapidly oscillating Ap star in the night sky. AX Circini is a Cepheid variable visible with the unaided eye, and BX Circini is a faint star thought to have been formed from the merger of two white dwarfs. Two sun-like stars have planetary systems: HD 134060 has two small planets, and HD 129445 has a Jupiter-like planet. Supernova SN 185 appeared in Circinus in 185 AD and was recorded by Chinese observers. Two novae have been observed more recently, in the 20th century.
The Tarantula Nebula is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner.
A stellar black hole is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be observed as a type of gamma ray burst. These black holes are also referred to as collapsars.
A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.
Cygnus X-3 is a high-mass X-ray binary (HMXB), one of the stronger binary X-ray sources in the sky. It is often considered to be a microquasar, and it is believed to be a compact object in a binary system which is pulling in a stream of gas from an ordinary star companion. It is one of only two known HMXBs containing a Wolf–Rayet star. It is invisible visually, but can be observed at radio, infrared, X-ray, and gamma-ray wavelengths.
A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.
The Tolman–Oppenheimer–Volkoff limit is an upper bound to the mass of cold, non-rotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. Stars more massive than the TOV limit collapse into a black hole. The original calculation in 1939, which neglected complications such as nuclear forces between neutrons, placed this limit at approximately 0.7 solar masses (M☉). Later, more refined analyses have resulted in larger values.
Westerlund 1 is a compact young super star cluster about 3.8 kpc away from Earth. It is thought to be the most massive young star cluster in the Milky Way, and was discovered by Bengt Westerlund in 1961 but remained largely unstudied for many years due to high interstellar absorption in its direction. In the future, it will probably evolve into a globular cluster.
4U 1700-37 is one of the stronger binary X-ray sources in the sky, and is classified as a high-mass X-ray binary. It was discovered by the Uhuru satellite. The "4U" designation refers to the fourth Uhuru catalog.
A0620-00 is a binary star system in the constellation of Monoceros, with an apparent magnitude of 11.2.
X Persei is a high-mass X-ray binary system located in the constellation Perseus, approximately 950 parsecs away. It is catalogued as 4U 0352+309 in the final Uhuru catalog of X-ray objects.
iPTF14hls is an unusual supernova star that erupted continuously for about 1,000 days beginning in September 2014 before becoming a remnant nebula. It had previously erupted in 1954. None of the theories nor proposed hypotheses fully explain all the aspects of the object.
UY Volantis, also known as EXO 0748-676, is a low mass X-ray binary system located in the constellation Volans. With an apparent magnitude of 16.9, it requires a powerful telescope to see. With a radial velocity of 20 km/s, it is drifting away from the Solar System, and is currently located 26,000 light years away.
Common envelope jets supernova (CEJSN) is a type of supernova, where the explosion is caused by the merger of a giant or supergiant star with a compact star such as a neutron star or a black hole. As the compact star plunges into the envelope of the giant/supergiant, it begins to accrete matter from the envelope and launches jets that can disrupt the envelope. Often, the compact star eventually merges with the core of the giant/supergiant; other times the infall stops before core merger.