Magnetogenetics

Last updated

Magnetogenetics is a medical research technique whereby magnetic fields are used to affect cell function. [1]

Contents

History

The development of genetic technologies that can modulate cellular processes has greatly contributed to biological research. A representative example is the development of optogenetics, which is a neuromodulation tool kit that involves light-sensitive proteins such as opsins. This progress provided the grounds for a breakthrough in linking the causal relationship between neuronal activity and behavioral outcome.

The foremost strength of the genetic toolkits used in neuromodulation is that it can provide either spatially or temporally, or both, precise modulation of the brain nervous system. To date, several technologies are adapted with genetics (e.g. optogenetics, chemogenetics, etc.), and each technology has strengths and limits. For example, optogenetics has advantages in that it can provide temporally and spatially precise manipulation of neurons. On the other hand, it involves light stimulation, which cannot penetrate tissues effectively and requires implanted optical devices, limiting its applications for in vivo live animal studies

Techniques that rely on the magnetic control of cellular process are relatively new. This technique may provide an approach that does not require implantation of invasive electrodes or optical devices. This method will allow penetration in to the deeper region of the brain, and may have lower response latency. [2] In 1980, Young and colleagues have shown that magnetic fields with magnitudes in millitesla range are able to penetrate into the brain without attenuation of the signal or side effects because of the negligible magnetic susceptibility and low conductivity of biological tissue. [3] Early attempts to manipulate electrical signaling within brain using magnetic fields was performed by Baker et al., who later developed devices for transcranial magnetic stimulation (TMS) in 1985.

To apply magnetogenetics in biological and neuroscientific research, fusing TRPV class receptors with a paramagnetic protein (typically ferritin) was suggested. These paramagnetic proteins, which typically contain iron or have iron-containing cofactors, are then magnetically stimulated. How this technique can modulate neuronal activity remains unclear but it is thought that the ion channels are activated and opened either by mechanical force exerted by the paramagnetic proteins, or by heating of these via magnetic stimulation. However, availability of such paramagnetic proteins as a transducer for magnetic field to mechanical or temperature stimuli is controversial.

On the other hand, nanoparticles have been suggested as possible candidates that can function as the transducer of magnetic field to the stimulus cue. Based on this concept, next generation of magnetogenetics technique is being developed. In 2010, Arnd Pralle and colleges showed that the first in vivo magneto-thermal stimulation of heat sensitive ion channel TRPV1 that employs magnetic nanoparticles as a transducer in C. elegans. [4] In 2012, Seung Chan Kim showed gene expression profile change of total human genome approximately 30,000 genes using 0.2T static magnetic fields. [5] In 2015, Polina Anikeeva's research group demonstrated that similar concept can enhance the neuronal signals in mammalian brain. [6] In 2021, Jinwoo Cheon's research group has successfully developed the magneto-mechanical genetics which uses magnetic stimulation derived mechanical force in mammalian. [7] In this study, magnetic torque by rotating magnetic field was employed to activate the mechanosensitive cation channel Piezo1. Results of this study show that remote, in vivo manipulation of behavior of mice can be done using magnetogenetics.

Issues

Physical limitation of the ferritin

One of the main issues in magnetogenetics is related the physical properties of the ferritin. [8] The ferritin is composed of 24 subunits of protein complex and a small iron oxide core. The core of the ferritin is in the form of ferric hydroxide which has antiferromagnetic properties. Some researchers have reported that ferritin has remnant magnetization due to their intrinsic defect and impurities. [9] However, even with optimistic calculations, the magnetic interaction energy for heat or force generation is several orders below than thermal fluctuation energy. Recently, other researchers hypothesized that there are other possible mechanisms for activate the ion channels, but these studies remain inconclusive.

See also

Related Research Articles

<span class="mw-page-title-main">Behavioral neuroscience</span> Field of study

Behavioral neuroscience, also known as biological psychology, biopsychology, or psychobiology, is the application of the principles of biology to the study of physiological, genetic, and developmental mechanisms of behavior in humans and other animals.

<span class="mw-page-title-main">Phosphene</span> Visual illusion

A phosphene is the phenomenon of seeing light without light entering the eye. The word phosphene comes from the Greek words phos (light) and phainein. Phosphenes that are induced by movement or sound may be associated with optic neuritis.

<span class="mw-page-title-main">Haemodynamic response</span>

In haemodynamics, the body must respond to physical activities, external temperature, and other factors by homeostatically adjusting its blood flow to deliver nutrients such as oxygen and glucose to stressed tissues and allow them to function. Haemodynamic response (HR) allows the rapid delivery of blood to active neuronal tissues. The brain consumes large amounts of energy but does not have a reservoir of stored energy substrates. Since higher processes in the brain occur almost constantly, cerebral blood flow is essential for the maintenance of neurons, astrocytes, and other cells of the brain. This coupling between neuronal activity and blood flow is also referred to as neurovascular coupling.

Neurotechnology encompasses any method or electronic device which interfaces with the nervous system to monitor or modulate neural activity.

Channelrhodopsins are a subfamily of retinylidene proteins (rhodopsins) that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis: movement in response to light. Expressed in cells of other organisms, they enable light to control electrical excitability, intracellular acidity, calcium influx, and other cellular processes. Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) from the model organism Chlamydomonas reinhardtii are the first discovered channelrhodopsins. Variants that are sensitive to different colors of light or selective for specific ions have been cloned from other species of algae and protists.

<span class="mw-page-title-main">Photostimulation</span>

Photostimulation is the use of light to artificially activate biological compounds, cells, tissues, or even whole organisms. Photostimulation can be used to noninvasively probe various relationships between different biological processes, using only light. In the long run, photostimulation has the potential for use in different types of therapy, such as migraine headache. Additionally, photostimulation may be used for the mapping of neuronal connections between different areas of the brain by “uncaging” signaling biomolecules with light. Therapy with photostimulation has been called light therapy, phototherapy, or photobiomodulation.

Neural engineering is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs.

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second messenger signaling cascade that induces a broad, long-lasting signal. This modulation can last for hundreds of milliseconds to several minutes. Some of the effects of neuromodulators include: altering intrinsic firing activity, increasing or decreasing voltage-dependent currents, altering synaptic efficacy, increasing bursting activity and reconfigurating synaptic connectivity.

<span class="mw-page-title-main">Transcranial direct-current stimulation</span> Technique of brain electric stimulation therapy

Transcranial direct current stimulation (tDCS) is a form of neuromodulation that uses constant, low direct current delivered via electrodes on the head. It was originally developed to help patients with brain injuries or neuropsychiatric conditions such as major depressive disorder. It can be contrasted with cranial electrotherapy stimulation, which generally uses alternating current the same way, as well as transcranial magnetic stimulation.

Light-gated ion channels are a family of ion channels regulated by electromagnetic radiation. Other gating mechanisms for ion channels include voltage-gated ion channels, ligand-gated ion channels, mechanosensitive ion channels, and temperature-gated ion channels. Most light-gated ion channels have been synthesized in the laboratory for study, although two naturally occurring examples, channelrhodopsin and anion-conducting channelrhodopsin, are currently known. Photoreceptor proteins, which act in a similar manner to light-gated ion channels, are generally classified instead as G protein-coupled receptors.

<span class="mw-page-title-main">KCNK4</span> Protein-coding gene in the species Homo sapiens

Potassium channel subfamily K member 4 is a protein that in humans is encoded by the KCNK4 gene. KCNK4 protein channels are also called TRAAK channels.

Optogenetics is a biological technique to control the activity of neurons or other cell types with light. This is achieved by expression of light-sensitive ion channels, pumps or enzymes specifically in the target cells. On the level of individual cells, light-activated enzymes and transcription factors allow precise control of biochemical signaling pathways. In systems neuroscience, the ability to control the activity of a genetically defined set of neurons has been used to understand their contribution to decision making, learning, fear memory, mating, addiction, feeding, and locomotion. In a first medical application of optogenetic technology, vision was partially restored in a blind patient with Retinitis pigmentosa.

Mechanosensation is the transduction of mechanical stimuli into neural signals. Mechanosensation provides the basis for the senses of light touch, hearing, proprioception, and pain. Mechanoreceptors found in the skin, called cutaneous mechanoreceptors, are responsible for the sense of touch. Tiny cells in the inner ear, called hair cells, are responsible for hearing and balance. States of neuropathic pain, such as hyperalgesia and allodynia, are also directly related to mechanosensation. A wide array of elements are involved in the process of mechanosensation, many of which are still not fully understood.

Mechanosensitive channels (MSCs), mechanosensitive ion channels or stretch-gated ion channels are membrane proteins capable of responding to mechanical stress over a wide dynamic range of external mechanical stimuli. They are present in the membranes of organisms from the three domains of life: bacteria, archaea, and eukarya. They are the sensors for a number of systems including the senses of touch, hearing and balance, as well as participating in cardiovascular regulation and osmotic homeostasis (e.g. thirst). The channels vary in selectivity for the permeating ions from nonselective between anions and cations in bacteria, to cation selective allowing passage Ca2+, K+ and Na+ in eukaryotes, and highly selective K+ channels in bacteria and eukaryotes.

Biomagnetics is a field of biotechnology. It has actively been researched since at least 2004. Although the majority of structures found in living organisms are diamagnetic, the magnetic field itself, as well as magnetic nanoparticles, microstructures and paramagnetic molecules can influence specific physiological functions of organisms under certain conditions. The effect of magnetic fields on biosystems is a topic of research that falls under the biomagnetic umbrella, as well as the construction of magnetic structures or systems that are either biocompatible, biodegradable or biomimetic. Magnetic nanoparticles and magnetic microparticles are known to interact with certain prokaryotes and certain eukaryotes.

Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space. Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation.

Gene therapy is being studied for some forms of epilepsy. It relies on viral or non-viral vectors to deliver DNA or RNA to target brain areas where seizures arise, in order to prevent the development of epilepsy or to reduce the frequency and/or severity of seizures. Gene therapy has delivered promising results in early stage clinical trials for other neurological disorders such as Parkinson's disease, raising the hope that it will become a treatment for intractable epilepsy.

Chemogenetics is the process by which macromolecules can be engineered to interact with previously unrecognized small molecules. Chemogenetics as a term was originally coined to describe the observed effects of mutations on chalcone isomerase activity on substrate specificities in the flowers of Dianthus caryophyllus. This method is very similar to optogenetics; however, it uses chemically engineered molecules and ligands instead of light and light-sensitive channels known as opsins.

<span class="mw-page-title-main">Anion-conducting channelrhodopsin</span> Class of light-gated ion channels

Anion-conducting channelrhodopsins are light-gated ion channels that open in response to light and let negatively charged ions enter a cell. All channelrhodopsins use retinal as light-sensitive pigment, but they differ in their ion selectivity. Anion-conducting channelrhodopsins are used as tools to manipulate brain activity in mice, fruit flies and other model organisms (Optogenetics). Neurons expressing anion-conducting channelrhodopsins are silenced when illuminated with light, an effect that has been used to investigate information processing in the brain. For example, suppressing dendritic calcium spikes in specific neurons with light reduced the ability of mice to perceive a light touch to a whisker. Studying how the behavior of an animal changes when specific neurons are silenced allows scientists to determine the role of these neurons in the complex circuits controlling behavior.

<span class="mw-page-title-main">Polina Anikeeva</span> Russian-American materials scientist

Polina Olegovna Anikeeva is a Russian-born American materials scientist who is a Professor of Material Science & Engineering as well as Brain & Cognitive Sciences at the Massachusetts Institute of Technology (MIT). She also holds faculty appointments in the McGovern Institute for Brain Research and Research Laboratory of Electronics at MIT. Her research is centered on developing tools for studying the underlying molecular and cellular bases of behavior and neurological diseases. She was awarded the 2018 Vilcek Foundation Prize for Creative Promise in Biomedical Science, the 2020 MacVicar Faculty Fellowship at MIT, and in 2015 was named a MIT Technology Review Innovator Under 35.

References

  1. Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M (February 2022). "Magnetogenetics: remote activation of cellular functions triggered by magnetic switches". Nanoscale. 14 (6): 2091–2118. doi:10.1039/d1nr06303k. PMC   8830762 . PMID   35103278.
  2. Roet M, Hescham SA, Jahanshahi A, Rutten BP, Anikeeva PO, Temel Y (June 2019). "Progress in neuromodulation of the brain: A role for magnetic nanoparticles?" (PDF). Progress in Neurobiology. 177: 1–14. doi:10.1016/j.pneurobio.2019.03.002. PMID   30878723. S2CID   75139154.
  3. Young JH, Wang MT, Brezovich IA (1980-05-09). "Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents". Electronics Letters. 16 (10): 358–359. Bibcode:1980ElL....16..358Y. doi:10.1049/el:19800255. ISSN   1350-911X.
  4. Huang, Heng; Delikanli, Savas; Zeng, Hao; Ferkey, Denise M.; Pralle, Arnd (August 2010). "Remote control of ion channels and neurons through magnetic-field heating of nanoparticles". Nature Nanotechnology. 5 (8): 602–606. Bibcode:2010NatNa...5..602H. doi:10.1038/nnano.2010.125. ISSN   1748-3387. PMID   20581833. S2CID   3084460.
  5. Im, Wooseok; Lee, Soon-Tae; Kim, Seung Chan (2012). "Gene expression profile analysis in cultured human neuronal cells after static magnetic stimulation". BioChip Journal. 6 (3): 254–261. doi:10.1007/s13206-012-6308-z. S2CID   83476336.
  6. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P (March 2015). "Wireless magnetothermal deep brain stimulation". Science. 347 (6229): 1477–80. Bibcode:2015Sci...347.1477C. doi:10.1126/science.1261821. hdl: 1721.1/96011 . PMID   25765068. S2CID   43687881.
  7. Lee, Jung-uk; Shin, Wookjin; Lim, Yongjun; Kim, Jungsil; Kim, Woon Ryoung; Kim, Heehun; Lee, Jae-Hyun; Cheon, Jinwoo (2021-01-28). "Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals". Nature Materials. 20 (7): 1029–1036. Bibcode:2021NatMa..20.1029L. doi:10.1038/s41563-020-00896-y. ISSN   1476-1122. PMID   33510447. S2CID   231747654.
  8. Meister M (August 2016). "Physical limits to magnetogenetics". eLife. 5: e17210. arXiv: 1604.01359 . doi: 10.7554/eLife.17210 . PMC   5016093 . PMID   27529126.
  9. Jutz G, van Rijn P, Santos Miranda B, Böker A (February 2015). "Ferritin: a versatile building block for bionanotechnology". Chemical Reviews. 115 (4): 1653–701. doi:10.1021/cr400011b. PMID   25683244.