Magnox Reprocessing Plant | |
---|---|
Official name | B205 |
Country | England, United Kingdom |
Location | Cumbria, North West England |
Coordinates | 54°24′56″N3°30′06″W / 54.4155°N 3.5017°W |
Status | Shut down |
Construction began | 1960 |
Commission date | 1964 |
Decommission date | 17 July 2022 |
Owner | Nuclear Decommissioning Authority |
Operators | UKAEA (1964-1971), BNFL (1971-2005), Sellafield Ltd (2005-present) |
Employees | (100) |
External links | |
Commons | Related media on Commons |
The Magnox Reprocessing Plant is a former nuclear reprocessing facility at Sellafield in northern England, which operated from 1964 to 2022. The plant used PUREX chemistry (based on tributyl phosphate (TBP)) to extract plutonium and uranium from used nuclear fuel originating primarily from Magnox reactors. [1] The plant was originally constructed and operated by the United Kingdom Atomic Energy Authority (UKAEA), but in 1971 control was transferred to British Nuclear Fuels Limited (BNFL). From 2005 the plant was operated by Sellafield Ltd. [2]
The plant was commissioned in 1964 as both a replacement for the UK's First Generation Reprocessing Plant, and to process spent fuel from the national fleet of Magnox reactors. The First generation Plant was then converted into a pre-handling plant for Magnox reprocessing and was recommissioned in 1969. In 1973, after both plants had been shut down for one year for maintenance, a violent reaction called a "blowback" occurred in the First Generation Plant which contaminated that plant and 34 workers with ruthenium-106. Following this event the First Generation Plant was permanently closed. [3]
Over its lifetime, the Magnox plant handled over 55,000 tons of spent fuel from the UK's fleet of 11 Magnox plants as well as reprocessing Magnox fuel from Italy, Japan, and fast breeder fuel from Dounreay. In total, the plant has returned over 15,000 tons of uranium back into the fuel cycle. As of 2019, all Magnox reactors have now been retired from operation and defueled, with the last load of burnt-up Magnox fuel arrived at Sellafield in 2019.
B205 ceased operations on 17 July 2022, when it was announced that it had worked through the remaining spent Magnox fuel stockpiles. Thus completing its mission which spanned nearly 6 decades. [4]
The process used mixer settlers as the basis of the plant operation. The unit comprised a set of mixing compartments where the solvent and aqueous liquids mixed. The mix then passed to an associated settler compartment where the solvent separated from the aqueous and forms two separate layers. These then left the settler compartment to the next mixer compartments. The solvent and aqueous flowed in opposite directions through the mixer settler stages (typically 8 or more), controlled by careful design of the transfer ports between the settler stages.[ citation needed ]
The task to extract usable uranium and plutonium began with a process known as "decanning" where the magnesium fuel can was separated from the inner uranium rod. The uranium rod was then sheared and dropped into a hot nitric acid solution within the Dissolver Cell. The aqueous stream was conditioned to the correct temperature and acidity and then passed to the first mixer settler system where fission products were separated from the uranium (U) and plutonium (Pu) by extraction of the U/Pu into the solvent phase comprising tri-butyl-phosphate in odourless kerosene. This had the effect of reducing the radiation levels in subsequent stages of the process and the resulting degradation of the solvents. [5]
The solvent stream of U, Pu and remaining fission products passed to the critical mixer settler stages where the U and Pu were transferred into the aqueous phase, and fission products remained in the solvent phase. Separation of the U and Pu was achieved by adding a reductant, which caused the Pu, but not the U, to transfer into the aqueous phase. Once separated, further removal of fission products was undertaken by more mixer settler units. The U and Pu streams were then passed to evaporators to concentrate the U and Pu before further processing in other plants. [6] The plant contributed the majority of liquid discharges from the Sellafield site; around 132 Terabecquerels (TBq) annually. [7]
In 2014 Sellafield Ltd celebrated 50 years of Magnox Reprocessing from 1964 to 2014. Called "50 not out" to highlight that the plant was not shutting down, the events related to this celebration spoke about the history of Magnox and Reprocessing as well as design choices that led to the use of magnesium cladding and overall information about the Magnox Operating Programme. [8]
In 2020 due to coronavirus, Sellafield Ltd announced that the Magnox reprocessing plant will undergo a controlled shutdown to ensure less maintenance when it is eventually restarted. Whereas turning the facility off quickly in a response to reduced staff members on-site has a possibility to result in unnecessary maintenance or repair work. This will cause the closure date of the facility to be pushed back as no fuel will be reprocessed in this time. [9]
Magnox fuel reprocessing ceased on 17 July 2022, when the reprocessing plant completed its last batch of fuel after 58 years of operation. A total of 55,000 tonnes of fuel had been processed during those years. [10]
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.
Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors. The reprocessed uranium, also known as the spent fuel material, can in principle also be re-used as fuel, but that is only economical when uranium supply is low and prices are high. Nuclear reprocessing may extend beyond fuel and include the reprocessing of other nuclear reactor material, such as Zircaloy cladding.
Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.
Sellafield, formerly known as Windscale, is a large multi-function nuclear site close to Seascale on the coast of Cumbria, England. As of August 2022, primary activities are nuclear waste processing and storage and nuclear decommissioning. Former activities included nuclear power generation from 1956 to 2003, and nuclear fuel reprocessing from 1952 to 2022.
Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.
Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The name comes from the magnesium-aluminium alloy, used to clad the fuel rods inside the reactor. Like most other "Generation I nuclear reactors", the Magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.
Chapelcross nuclear power station is a former Magnox nuclear power station undergoing decommissioning. It is located in Annan in Dumfries and Galloway in southwest Scotland, and was in operation from 1959 to 2004. It was the sister plant to the Calder Hall nuclear power station plant in Cumbria, England; both were commissioned and originally operated by the United Kingdom Atomic Energy Authority. The primary purpose of both plants was to produce weapons-grade plutonium for the UK's nuclear weapons programme, but they also generated electrical power for the National Grid. Later in the reactors' lifecycle, as the UK slowed the development of the nuclear deterrent as the cold war came to a close, power production became the primary goal of reactor operation.
The integral fast reactor (IFR), originally the advancedliquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.
PUREX is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the de facto standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium from used nuclear fuel. It is based on liquid–liquid extraction ion-exchange.
The Thermal Oxide Reprocessing Plant, or THORP, is a nuclear fuel reprocessing plant at Sellafield in Cumbria, England. THORP is owned by the Nuclear Decommissioning Authority and operated by Sellafield Ltd, the site licensee.
Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.
Fluoride volatility is the tendency of highly fluorinated molecules to vaporize at comparatively low temperatures. Heptafluorides, hexafluorides and pentafluorides have much lower boiling points than the lower-valence fluorides. Most difluorides and trifluorides have high boiling points, while most tetrafluorides and monofluorides fall in between. The term "fluoride volatility" is jargon used particularly in the context of separation of radionuclides.
The La Hague site is a nuclear fuel reprocessing plant at La Hague on the Cotentin Peninsula in northern France, with the Manche storage centre bordering on it. Operated by Orano, formerly AREVA, and prior to that COGEMA, La Hague has nearly half of the world's light water reactor spent nuclear fuel reprocessing capacity. It has been in operation since 1976, and has a capacity of about 1,700 tonnes per year. It extracts plutonium which is then recycled into MOX fuel at the Marcoule site.
Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.
In nuclear power technology, burnup is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA or %FIFA as well as, preferably, the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.
Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.
Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing.
REMIX-Fuel (REgenerated MIXture of U, Pu oxides) was developed in Russia to simplify the reprocessing process, reuse spent fuel, reduce the consumption of natural uranium and to enable multi-recycling.
The advanced reprocessing of spent nuclear fuel is a potential key to achieve a sustainable nuclear fuel cycle and to tackle the heavy burden of nuclear waste management. In particular, the development of such advanced reprocessing systems may save natural resources, reduce waste inventory and enhance the public acceptance of nuclear energy. This strategy relies on the recycling of major actinides and the transmutation of minor actinides in appropriate reactors. In order to fulfill this objective, selective extracting agents need to be designed and developed by investigating their complexation mechanism.