Maisie's Galaxy

Last updated
Maisie's Galaxy
Ages of Candidate Cosmic Ancients (Stamps dropout press version noz).png
Maisie’s Galaxy and CEERS-93316 shown at six infrared wavelengths, with small circles highlighting each object.
Observation data (J2000 epoch)
Right ascension 214.943153
Declination 52.942442
Redshift 11.4
Other designations
CEERS J141946.36+525632.8, [HOO2023] CR2-z12-1

Maisie's Galaxy (also known as CEERS J141946.36+525632.8) is a distant galaxy located at z=11.4 that existed 390 million years after the beginning of the universe.

Contents

Background

Discovered in 2022 using the James Webb Space Telescope (JWST) in the CEERS field, Maisie's Galaxy has high star formation rates. [1] [2] It was named after the nine-year-old daughter of the person who discovered it. [3]

In February 2023, the CEERS teams followed up their high-redshift candidates with observatory’s NIRSpec (Near-Infrared Spectrograph) instrument to measure precise, spectroscopic redshifts. One candidate (Maisie’s Galaxy) has been confirmed to be at redshift 11.4 (when the universe was 390 million years old), while the second candidate was discovered to actually be at a lower redshift of 4.9 (when the universe was 1.2 billion years old.) [4]

See also

Related Research Articles

The following is a timeline of galaxies, clusters of galaxies, and large-scale structure of the universe.

<span class="mw-page-title-main">James Webb Space Telescope</span> NASA/ESA/CSA space telescope launched in 2021

The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. Its high-resolution and high-sensitivity instruments allow it to view objects too old, distant, or faint for the Hubble Space Telescope. This enables investigations across many fields of astronomy and cosmology, such as observation of the first stars and the formation of the first galaxies, and detailed atmospheric characterization of potentially habitable exoplanets.

<span class="mw-page-title-main">UDFy-38135539</span> Distant galaxy in the constellation Fornax

UDFy-38135539 is the Hubble Ultra Deep Field (UDF) identifier for a galaxy which was calculated as of October 2010 to have a light travel time of 13.1 billion years with a present proper distance of around 30 billion light-years.

<span class="mw-page-title-main">UDFj-39546284</span> High red-shift structure in the constellation Fornax

UDFj-39546284 is a high-redshift Lyman-break galaxy discovered by the Hubble Space Telescope in infrared Hubble Ultra-Deep Field (HUDF) observations in 2009. The object, located in the Fornax constellation, was identified by G. Illingworth, R. Bouwens and the HUDF09 Team during 2009 and 2010. It was reported with a redshift of z~10 using Hubble and Spitzer Space Telescope photometric data, with later reports in 2012 suggesting a possibly higher redshift of z = 11.9 Although doubts were raised that this galaxy could instead be a low-redshift interloper with extreme spectral emission lines producing the appearance of a very high redshift source, later spectroscopic observations by the James Webb Space Telescope's NIRSpec instrument in 2022 confirmed the galaxy's high redshift to a spectroscopically confirmed estimate of z = 11.58.

<span class="mw-page-title-main">MACS0647-JD</span> The farthest known galaxy from the Earth in the constellation Camelopardalis

MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.

<span class="mw-page-title-main">EGSY8p7</span>

EGSY8p7 (EGSY-2008532660) is a distant galaxy in the constellation of Boötes, with a spectroscopic redshift of z = 8.68, a light travel distance of 13.2 billion light-years from Earth. Therefore, at an age of 13.2 billion years, it is observed as it existed 570 million years after the Big Bang, which occurred 13.8 billion years ago, using the W. M. Keck Observatory. In July 2015, EGSY8p7 was announced as the oldest and most-distant known object, surpassing the previous record holder, EGS-zs8-1, which was determined in May 2015 as the oldest and most distant object. In March 2016, Pascal Oesch, one of the discoverers of EGSY8p7, announced the discovery of GN-z11, an older and more distant galaxy.

<span class="mw-page-title-main">GN-z11</span> High-redshift galaxy in the constellation Ursa Major

GN-z11 is a high-redshift galaxy found in the constellation Ursa Major. It is among the farthest known galaxies from Earth ever discovered. The 2015 discovery was published in a 2016 paper headed by Pascal Oesch and Gabriel Brammer. Up until the discovery of JADES-GS-z13-0 in 2022 by the James Webb Space Telescope, GN-z11 was the oldest and most distant known galaxy yet identified in the observable universe, having a spectroscopic redshift of z = 10.957, which corresponds to a proper distance of approximately 32 billion light-years. Data published in 2024 established that the galaxy contains the most distant, and therefore earliest, black hole known in the universe, estimated at around 1.6 million solar masses.

<span class="mw-page-title-main">SPT0418-47</span> Old and extremely distant galaxy in the constellation Horologium

SPT0418-47 is a gravitationally lensed, high-redshift, dusty star-forming galaxy, discovered with the South Pole Telescope. Observations with NASA's James Webb Space Telescope (JWST) have revealed the presence of a companion galaxy, which may indicate that SPT0418-47 is a merging system of galaxies.

<span class="mw-page-title-main">WHL0137-LS</span> Most distant known star, discovered 2022

WHL0137-LS, also known as Earendel, is a star located in the constellation of Cetus. Discovered in 2022 by the Hubble Space Telescope, it is the earliest and most distant known star, at a comoving distance of 28 billion light-years. The previous furthest known star, MACS J1149 Lensed Star 1, also known as Icarus, at a comoving distance of 14.4 billion light-years, was discovered by Hubble in 2018. Stars like Earendel can be observed at cosmological distances thanks to the large magnification factors involved, that can exceed 1000. Other stars have been observed through this technique, such as Godzilla.

<span class="mw-page-title-main">HD1</span> High-redshift galaxy that is one of the oldest and most distant known galaxies

HD1 is a proposed high-redshift galaxy, which is considered to be one of the earliest and most distant known galaxies yet identified in the observable universe. The galaxy, with an estimated redshift of approximately z = 13.27, is seen as it was about 324 million years after the Big Bang, which was 13.787 billion years ago. It has a light-travel distance of 13.463 billion light-years from Earth, and, due to the expansion of the universe, a present proper distance of 33.288 billion light-years.

<span class="mw-page-title-main">Webb's First Deep Field</span> First operational image from NASAs James Webb Space Telescope

Webb's First Deep Field is the first operational image taken by the James Webb Space Telescope (JWST). The deep-field photograph, which covers a tiny area of sky visible from the Southern Hemisphere, is centered on SMACS 0723, a galaxy cluster in the constellation of Volans. Thousands of galaxies are visible in the image, some as old as 13 billion years. It is the highest-resolution image of the early universe ever taken. Captured by the telescope's Near-Infrared Camera (NIRCam), the image was revealed to the public by NASA on 11 July 2022.

<span class="mw-page-title-main">GLASS-z12</span> Lyman-break galaxy that is one of the oldest galaxies known

GLASS-z12 is a Lyman-break galaxy discovered by the Grism Lens-Amplified Survey from Space (GLASS) observing program using the James Webb Space Telescope's NIRCam in July 2022. Spectroscopic observations of GLASS-z12 by the Atacama Large Millimeter Array (ALMA) in August 2022 confirmed that the galaxy has a spectroscopic redshift of 12.117±0.012, making it one of the earliest and most distant galaxies ever discovered, dating back to just 350 million years after the Big Bang, 13.6 billion years ago. ALMA observations detected an emission line associated with doubly ionized oxygen at 258.7 GHz with a significance of 5σ, suggesting that there is very low dust content in GLASS-z12, if not the early universe as well. Also based on oxygen-related measurements, the age of the galaxy is confirmed.

<span class="mw-page-title-main">CEERS-93316</span> Possibly one of the oldest galaxies observed

CEERS-93316 is a high-redshift galaxy with a spectroscopic redshift z=4.9. Significantly, the redshift that was initially reported was photometric and would have made CEERS-93316 the earliest and most distant known galaxy observed.

<span class="mw-page-title-main">JADES-GS-z13-0</span> High-redshift Lyman-break galaxy that is one of the oldest galaxies known

JADES-GS-z13-0 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Advanced Deep Extragalactic Survey (JADES) on 29 September 2022. Spectroscopic observations by JWST's NIRSpec instrument in October 2022 confirmed the galaxy's redshift of z = 13.2 to a high accuracy, establishing it as the oldest and most distant spectroscopically-confirmed galaxy known as of 2023, with a light-travel distance of 13.4 billion years. Due to the expansion of the universe, its present proper distance is approximately 33 billion light-years.

F200DB-045 is a candidate high-redshift galaxy, with an estimated redshift of approximately z = 20.4, corresponding to 168 million years after the Big Bang. If confirmed, it would be one of the earliest and most distant known galaxies observed.

Jeyhan Sevim Kartaltepe is an American astronomer, Associate Professor and Director of the Rochester Institute of Technology Laboratory for Multiwavelength Astrophysics. Her research considers observational astronomy and galaxy evolution. She is a lead investigator on the Cosmic Evolution Early Release Science Survey and the COSMOS-Webb Survey conducted on the James Webb Space Telescope.

CEERS 1019 is a black hole in the galaxy previously identified as EGSY8p7 or z910_6811 and may be the oldest known black hole as of 2023. The galaxy and its black hole came into existence about 570 million years after the Big Bang, and the black hole in the center of CEERS 1019 seems to be less massive than any other black holes identified in the early universe but still larger than black hole growth methods can currently explain. The authors of a 2023 preprint describing it state that "We find that it is difficult to explain a SMBH of this mass ... with a stellar seed", i.e. gravitational collapse into a stellar black hole. Its mass is 106.95±0.37 solar masses.

CEERS-2112 is the most distant barred spiral galaxy observed as of 2023. The light observed from the galaxy was emitted when the universe was only 2.1 billion years old. It was determined to be similar in mass to the Milky Way.

<span class="mw-page-title-main">JADES-GS-z7-01-QU</span> Galaxy in the constellation Fornax

JADES-GS-z7-01-QU is a Lyman-break galaxy, first identified in 2010, located in the constellation Fornax. It formed around 700 million years after the birth of the universe, after which it suddenly stopped creating new stars. It experienced rapid star formation around 80 million years ago, lasting for at least 30 million years, before ending around 10-20 million years ago. It is the oldest and most distant "dead" galaxy so far discovered.

References

  1. Lea, Robert (2023-08-17). "James Webb Space Telescope confirms 'Maisie's galaxy' is one of the earliest ever seen". Space.com. Retrieved 2023-11-13.
  2. "Webb Spots Candidate for Most Distant Known Galaxy". Sci.News. 2022-08-04. Retrieved 2023-11-13.
  3. Finkelstein, Steven L.; Bagley, Micaela B.; Haro, Pablo Arrabal; Dickinson, Mark; Ferguson, Henry C.; Kartaltepe, Jeyhan S.; Papovich, Casey; Burgarella, Denis; Kocevski, Dale D.; Huertas-Company, Marc; Iyer, Kartheik G.; Koekemoer, Anton M.; Larson, Rebecca L.; Pérez-González, Pablo G.; Rose, Caitlin (2022-12-01). "A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging". The Astrophysical Journal Letters. 940 (2): L55. arXiv: 2207.12474 . doi: 10.3847/2041-8213/ac966e . ISSN   2041-8205.
  4. "James Webb Space Telescope". blogs.nasa.gov. 2023-12-21. Retrieved 2024-02-02.