Marine Isotope Stage 5

Last updated
5 million year history, representing the Lisiecki and Raymo (2005) LR04 Benthic Stack Five Myr Climate Change.svg
5 million year history, representing the Lisiecki and Raymo (2005) LR04 Benthic Stack

Marine Isotope Stage 5 or MIS 5 is a marine isotope stage in the geologic temperature record, between 130,000 and 80,000 years ago. [1] Sub-stage MIS 5e corresponds to the Last Interglacial, also called the Eemian (in Europe) or Sangamonian (in North America), the last major interglacial period before the Holocene, which extends to the present day. [2] Interglacial periods which occurred during the Pleistocene are investigated to better understand present and future climate variability. Thus, the present interglacial, the Holocene, is compared with MIS 5 or the interglacials of Marine Isotope Stage 11.

Contents

Substages

MIS 5, is divided into substages, divided alphabetically or with a numeric system for referring to "horizons" (events rather than periods), with MIS 5.5 representing the peak point of MIS 5e, and 5.51, 5.52 etc. representing the peaks and troughs of the record at a still more detailed level. [3]

Marine Isotope Stage (MIS) 5e

Marine Isotope Stage (MIS) 5e, called the Eemian (Ipswichian in Britain) around 124,000–119,000 years ago, was the last interglacial period before the present (Holocene), and compared global mean surface temperatures were at least 2 °C (3.6 °F) warmer. Mean sea level was 4–6 m (13–20 ft) higher than at present, following reductions of the Greenland ice sheet. Fossil reef proxies indicate sea level fluctuations of up to 10 m (33 ft) around the mean. Based on the data obtained from stable oxygen isotopes of planktonic foraminifera and age constraints from corals, estimates suggest average rates of sea-level rise of 1.6 m (5 ft 3 in) per century. The findings are important to understand current climate change, because global mean temperatures during MIS-5e were similar to the projected climate change today. [4]

A 2015 study by sea level rise experts concluded that based on MIS 5e data, sea level rise could accelerate in the coming decades, with a doubling time of 10, 20 or 40 years. The study abstract explains:

We argue that ice sheets in contact with the ocean are vulnerable to non-linear disintegration in response to ocean warming, and we posit that ice sheet mass loss can be approximated by a doubling time up to sea level rise of at least several meters. Doubling times of 10, 20 or 40 years yield sea level rise of several meters in 50, 100 or 200 years. Paleoclimate data reveal that subsurface ocean warming causes ice shelf melt and ice sheet discharge. Our climate model exposes amplifying feedbacks in the Southern Ocean that slow Antarctic bottom water formation and increase ocean temperature near ice shelf grounding lines, while cooling the surface ocean and increasing sea ice cover and water column stability. Ocean surface cooling, in the North Atlantic as well as the Southern Ocean, increases tropospheric horizontal temperature gradients, eddy kinetic energy and baroclinicity, which drive more powerful storms. [5]

A 2018 study based on cave formations in the Mediterranean Sea found sea level rise of up to 6 meters, noting "The results suggest that if the pre-industrial temperature will be surpassed by 1.5 to 2°C, sea level will respond and rise 2 to 6 meters (7 to 20 feet) above present sea level." [6] Evidence from Bahamas and Bermuda suggest powerful storm activity at the time, strong enough for wave-transported megaboulders, lowland chevron storm ridges, and wave runup deposits. [7]

Other sub-stages

The Eemian was followed by a sharp decline in temperature around 116,000 years ago and the warmer MIS 5c,from around 100,000 years ago, probably the period known as the Chelford Interstadial in Britain. Cooling from around 90,000 years ago was followed by the warmer MIS 5a, around 80,000 years ago, called in Britain the Brimpton Interstadial. [8]

From MIS 5c to MIS 5a, or from about 104,000 to 82,000 years ago, the Indian Summer Monsoon (ISM) declined in overall intensity. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Pleistocene</span> First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from c. 2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος (pleîstos), meaning "most", and καινός, meaning "new".

<span class="mw-page-title-main">Climate variability and change</span> Change in the statistical distribution of climate elements for an extended period

Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more. Climate change may refer to any time in Earth's history, but the term is now commonly used to describe contemporary climate change, often popularly referred to as global warming. Since the Industrial Revolution, the climate has increasingly been affected by human activities.

<span class="mw-page-title-main">Eemian</span> Interglacial period which began 130,000 years ago

The Eemian or Last Interglacial was the interglacial period which began about 130,000 years ago at the end of the Penultimate Glacial Period and ended about 115,000 years ago at the beginning of the Last Glacial Period. It corresponds to Marine Isotope Stage 5e. It was the second-to-latest interglacial period of the current Ice Age, the most recent being the Holocene which extends to the present day. The prevailing Eemian climate was, on average, around 1 to 2 degrees Celsius warmer than that of the Holocene. During the Eemian, the proportion of CO2 in the atmosphere was about 280 parts per million.

<span class="mw-page-title-main">Bolshoy Lyakhovsky Island</span> Island in Lyakhovsky Islands, Russia

Bolshoy Lyakhovsky Island, or Great Lyakhovsky, is the largest of the Lyakhovsky Islands belonging to the New Siberian Islands archipelago between the Laptev Sea and the East Siberian Sea in northern Russia. It has an area of 5,156.6 km2 (1,991.0 sq mi), and a maximum altitude of 311 m (1,020 ft).

<span class="mw-page-title-main">Timeline of glaciation</span> Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

<span class="mw-page-title-main">Global temperature record</span> Fluctuations of the Earths temperature over time

The global temperature record shows the fluctuations of the temperature of the atmosphere and the oceans through various spans of time. There are numerous estimates of temperatures since the end of the Pleistocene glaciation, particularly during the current Holocene epoch. Some temperature information is available through geologic evidence, going back millions of years. More recently, information from ice cores covers the period from 800,000 years before the present time until now. A study of the paleoclimate covers the time period from 12,000 years ago to the present. Tree rings and measurements from ice cores can give evidence about the global temperature from 1,000-2,000 years before the present until now. The most detailed information exists since 1850, when methodical thermometer-based records began. Modifications on the Stevenson-type screen were made for uniform instrument measurements around 1880.

<span class="mw-page-title-main">Greenland ice core project</span> Project to drill through Greenland ice sheet

The Greenland Ice Core Project (GRIP) was a research project organized through the European Science Foundation (ESF). The project ran from 1989 to 1995, with drilling seasons from 1990 to 1992. In 1988, the project was accepted as an ESF-associated program, and the fieldwork was started in Greenland in the summer of 1989.

The Flandrian interglacial or stage is the regional name given by geologists and archaeologists in the British Isles to the period from around 12,000 years ago, at the end of the last glacial period, to the present day. As such, it is in practice identical in span to the Holocene.

Stadials and interstadials are phases dividing the Quaternary period, or the last 2.6 million years. Stadials are periods of colder climate, and interstadials are periods of warmer climate.

<span class="mw-page-title-main">Marine isotope stages</span> Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data derived from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

<span class="mw-page-title-main">Interglacial</span> Geological interval of warmer temperature that separates glacial periods within an ice age

An interglacial period is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

<span class="mw-page-title-main">Eemian Sea</span> Body of water existing over 100,000 years ago near the modern Baltic Sea

The Eemian Sea was a body of water located approximately where the Baltic Sea is now during the last interglacial, or Eemian Stage, Marine isotopic stage (MIS) 5e, roughly 130,000 to 115,000 years BP. Sea level was 5 to 7 metres higher globally than it is today, due to the release of glacial water in the early stage of the interglacial. Although "Eemian" rightly applies only to the northern European glacial system, some scientists use the term in a wider sense to mean any high-level body of water in the last interglacial.

<span class="mw-page-title-main">Marine Isotope Stage 11</span> Marine isotope stage between 424,000 and 374,000 years ago

Marine Isotope Stage 11 or MIS 11 is a Marine Isotope Stage in the geologic temperature record, covering the interglacial period between 424,000 and 374,000 years ago. It corresponds to the Hoxnian Stage in Britain.

The Sangamonian Stage is the term used in North America to designate the Last Interglacial and depending on definition, part of the early Last Glacial Period, corresponding to Marine Isotope Stage 5. While often historically considered equivalent in scope to MIS 5, it is now often used in a more narrow sense to refer to the Last Interglacial only. It preceded the Wisconsinan (Wisconsin) Stage and followed the Illinoian Stage in North America.

<span class="mw-page-title-main">Weichselian glaciation</span> Last glacial period and its associated glaciation in northern parts of Europe

The Weichselian glaciation was the last glacial period and its associated glaciation in northern parts of Europe. In the Alpine region it corresponds to the Würm glaciation. It was characterized by a large ice sheet that spread out from the Scandinavian Mountains and extended as far as the east coast of Schleswig-Holstein, northern Poland and Northwest Russia. This glaciation is also known as the Weichselian ice age, Vistulian glaciation, Weichsel or, less commonly, the Weichsel glaciation, Weichselian cold period (Weichsel-Kaltzeit), Weichselian glacial (Weichsel-Glazial), Weichselian Stage or, rarely, the Weichselian complex (Weichsel-Komplex).

<span class="mw-page-title-main">Maureen Raymo</span> American paleoclimatologist and marine geologist

Maureen E. "Mo" Raymo is an American paleoclimatologist and marine geologist. She is the Co-Founding Dean of the Columbia Climate School, Director of the Lamont–Doherty Earth Observatory of Columbia University, the G. Unger Vetlesen Professor of Earth & Environmental Sciences, and Director of the Lamont–Doherty Core Repository at the Lamont–Doherty Earth Observatory of Columbia University. She is the first female climate scientist and first female scientist to head the institution.

<span class="mw-page-title-main">Marine Isotope Stage 13</span>

Marine Isotope Stage 13 or MIS 13 is a Marine isotope stage in the geologic temperature record, in Britain covering the Cromerian interglacial period between ~524,000 and 474,000 years ago. It is split into three substages, MIS 13a MIS 13b, and MIS 13c. Some records indicate that MIS 13a was an unstable warm peak with a cold split in the middle at MIS 13.12 - separating warm MIS 13.11 and 13.13. This interglacial follows the relatively warm glacial period associated with Marine Isotope Stage 14, and is followed by the relatively cold glacial period associated with MIS 12.

<span class="mw-page-title-main">Marine Isotope Stage 9</span>

Marine Isotope Stage 9 was an interglacial period that consisted of two interstadial and one stadial period. It is the final period of the Lower Paleolithic and lasted from 337,000 to 300,000 years ago according to Lisiecki and Raymo's LR04 Benthic Stack. It corresponds to the Purfleet Interglacial in Britain, the Holstein Interglacial in continental Europe, and the Pre-Illinoian in North America.

<span class="mw-page-title-main">Late Cenozoic Ice Age</span> Ice age of the last 34 million years, in particular in Antarctica

The Late Cenozoic Ice Age, or Antarctic Glaciation, began 34 million years ago at the Eocene-Oligocene Boundary and is ongoing. It is Earth's current ice age or icehouse period. Its beginning is marked by the formation of the Antarctic ice sheets.

Global paleoclimate indicators are the proxies sensitive to global paleoclimatic environment changes. They are mostly derived from marine sediments. Paleoclimate indicators derived from terrestrial sediments, on the other hand, are commonly influenced by local tectonic movements and paleogeographic variations. Factors governing the Earth's climate system include plate tectonics, which controls the configuration of continents, the interplay between the atmosphere and the ocean, and the Earth's orbital characteristics. Global paleoclimate indicators are established based on the information extracted from the analyses of geologic materials, including biological, geochemical and mineralogical data preserved in marine sediments. Indicators are generally grouped into three categories; paleontological, geochemical and lithological.

References

  1. Medley, S. Elizabeth (2011). "High Resolution Climate Variability from Marine Isotope Stage 5: a Multi-Proxy Record from the Cariaco Basin, Venezuela". University of California. Archived from the original on 2014-07-27. Retrieved 2014-07-20.
  2. Shackleton, Nicholas J.; Sánchez-Goñi, Maria Fernanda; Pailler, Delphine; Lancelot, Yves (2003). "Marine Isotope Substage 5e and the Eemian Interglacial" (PDF). Global and Planetary Change. 36 (3): 151–155. Bibcode:2003GPC....36..151S. CiteSeerX   10.1.1.470.1677 . doi:10.1016/S0921-8181(02)00181-9. Archived from the original (PDF) on 2016-03-03. Retrieved 2014-08-07.
  3. Lisiecki, L.E. (2005). "Ages of MIS boundaries". LR04 Benthic Stack. Boston University.
  4. Rohling, E. J.; Grant, K.; Hemleben, Ch.; Siddall, M.; Hoogakker, B. A. A.; Bolshaw, M.; Kucera, M. (2007). "High rates of sea-level rise during the last interglacial period". Nature Geoscience. 1: 38–42. doi:10.1038/ngeo.2007.28.
  5. Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; Velicogna, I.; Kandiano, E.; von Schuckmann, K.; Kharecha, P.; Legrande, A. N.; Bauer, M.; Lo, K.-W. (2015). "Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous" (PDF). Atmospheric Chemistry and Physics Discussions. 15 (14): 20059–20179. Bibcode:2015ACPD...1520059H. doi: 10.5194/acpd-15-20059-2015 .
  6. University of New Mexico. "Scientists find stable sea levels during last interglacial". ScienceDaily. Retrieved September 11, 2018.
  7. Hearty, P.J.; Tormey, B.R. (2017). "Sea-level change and superstorms; geologic evidence from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous prospects for a warming Earth". Marine Geology. 390: 347–365. Bibcode:2017MGeol.390..347H. doi: 10.1016/j.margeo.2017.05.009 .
  8. Stone, P.; et al. "Devensian glaciations, Quaternary, Southern Uplands". Earthwise. British Geological Survey. Retrieved 19 November 2019.
  9. Band, Shraddha T.; Yadava, M. G.; Kaushal, Nikita; Midhun, M.; Thirumalai, Kaustubh; Francis, Timmy; Laskar, Amzad; Ramesh, R.; Henderson, Gideon M.; Narayana, A. C. (16 June 2022). "Southern hemisphere forced millennial scale Indian summer monsoon variability during the late Pleistocene". Scientific Reports . 12 (1): 10136. doi: 10.1038/s41598-022-14010-6 . hdl: 20.500.11850/555981 . ISSN   2045-2322 . Retrieved 19 December 2023.