Mars Color Imager

Last updated
Mars Color Imager on the right side Mars Climate Orbiter - mco marci.jpg
Mars Color Imager on the right side

The Mars Color Imager (MARCI) is a wide-angle, relatively low-resolution camera built for Mars Climate Orbiter and Mars Reconnaissance Orbiter . MARCI views the surface of Mars in five visible and two ultraviolet bands. Each day, MARCI collects about 84 images and produces a global map with pixel resolutions of 1 to 10 km (0.62 to 6.21 mi). This map provides a weekly weather report for Mars, helps to characterize its seasonal and annual variations, and maps the presence of water vapor and ozone in its atmosphere. [1] The camera was built and is operated by Malin Space Science Systems. It has a 180-degree fisheye lens with the seven color filters bonded directly on a single CCD sensor. [2] [3] [4]

Contents

Specifications

MARCI diagram Mars Climate Orbiter - MARCI WA diagram 2.png
MARCI diagram

MARCI consists of nadir-pointed wide angle and medium angle cameras. Each camera has its own unique optics and identical focal plane assemblies, data acquisition system electronics, and power supplies. MARCI is mounted on the bottom (nadir pointing side) of the spacecraft. Each camera consists of a stray light baffle and lens elements and filters which focus onto an electronically-shuttered CCD. Without the baffle, the wide-angle camera is approximately 4.8 x 4.8 x 3.8 cm and the medium angle camera 5.4 x 5.4 x 5.5 cm. The wide-angle baffle extends an additional 1.4 cm and the medium angle baffle 2 cm. The cameras operate in push-frame fashion, in which a filter plate, consisting of multiple narrowband filter strips in the cross-track direction, is mounted over the detector. Consecutive images are taken each time the camera footprint advances one filter-width (about 20 pixels) in the downtrack direction. The images are 1000 x 1000 pixels in size. The MARCI operating temperature range is -40 to +70 degrees C and survival range is -80 to +100 degrees C. [3]

The wide-angle camera has a field of view of 140 degrees. It has a dual lens system consisting of a five-element fused silica f/6 lens for short UV and a seven-element optical glass f/5 lens for longer UV and visible light. The optical paths of both lens systems are combined by a prism and dichroic beamsplitter, giving an effective focal length of 4.3 mm. It is capable of obtaining images in 7 spectral bands, 5 visible and 2 UV at a resolution of 7.2 km/pixel or better. The raw data rate from the wide-angle camera is 29.6 kbps per band. [3]

The medium-angle camera has a field-of-view of 6 degrees. It has an f/2 catadioptric lens consisting of six elements, five of SiO2 and one of BK7, with an effective focal length of 87.9 mm. Images can be obtained in any of 10 spectral bands, ranging from 425 to 1000 nm, at a nadir resolution of 40 m/pixel. The raw data rate from the medium-angle camera is 704 kbps per band. [3]

Under proper conditions, resolutions up to 1 kilometer (3300 ft) are possible. [5] [6] The principal investigator on this project was Michael Malin at Malin Space Science Systems and the project was reincorporated on Mars Reconnaissance Orbiter . Its objectives: [5]

Camera filters [5]
Filter
name
Camera
angle
Wavelength
(nm)Color
UV1Wide280Invisible
UV2Wide315Invisible
MA1Medium445
WA1Wide453
MA2Medium501
WA2Wide561
MA3Medium562
WA3Wide614
WA4Wide636
MA4Medium639
WA5Wide765
MA5Medium767
MA6Medium829Slightly visible
MA7Medium903Invisible
MA8Medium1002Invisible

Related Research Articles

<i>Clementine</i> (spacecraft) American space project

Clementine was a joint space project between the Ballistic Missile Defense Organization and NASA, launched on January 25, 1994. Its objective was to test sensors and spacecraft components in long-term exposure to space and to make scientific observations of both the Moon and the near-Earth asteroid 1620 Geographos.

<span class="mw-page-title-main">Lunar Orbiter program</span> Series of five uncrewed lunar orbiter missions

The Lunar Orbiter program was a series of five uncrewed lunar orbiter missions launched by the United States from 1966 through 1967. Intended to help select Apollo landing sites by mapping the Moon's surface, they provided the first photographs from lunar orbit and photographed both the Moon and Earth.

<i>Mars Pathfinder</i> Mission including first robotic rover to operate on Mars (1997)

Mars Pathfinder is an American robotic spacecraft that landed a base station with a roving probe on Mars in 1997. It consisted of a lander, renamed the Carl Sagan Memorial Station, and a lightweight, 10.6 kg (23 lb) wheeled robotic Mars rover named Sojourner, the first rover to operate outside the Earth–Moon system.

<span class="mw-page-title-main">Camera lens</span> Optical lens or assembly of lenses used with a camera to create images

A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.

<i>Mars Global Surveyor</i> NASA Mars orbiter launched in 1996

Mars Global Surveyor (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through the atmosphere to the surface. As part of the larger Mars Exploration Program, Mars Global Surveyor performed atmospheric monitoring for sister orbiters during aerobraking, and helped Mars rovers and lander missions by identifying potential landing sites and relaying surface telemetry.

<i>Mars Climate Orbiter</i> Robotic space probe launched by NASA on December 11, 1998

The Mars Climate Orbiter was a 638-kilogram robotic space probe launched by NASA on December 11, 1998, to study the Martian climate, Martian atmosphere, and surface changes and to act as the communications relay in the Mars Surveyor '98 program for Mars Polar Lander. However, on September 23, 1999, communication with the spacecraft was permanently lost as it went into orbital insertion. The spacecraft encountered Mars on a trajectory that brought it too close to the planet, and it was either destroyed in the atmosphere or escaped the planet's vicinity and entered an orbit around the Sun. An investigation attributed the failure to a measurement mismatch between two software systems: metric units by NASA and US customary units by spacecraft builder Lockheed Martin.

<i>Mars Reconnaissance Orbiter</i> NASA Mars orbiter launched in 2005, still operational

Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to search for the existence of water on Mars, as part of NASA's Mars Exploration Program. It was launched from Cape Canaveral on August 12, 2005, at 11:43 UTC and reached Mars on March 10, 2006, at 21:24 UTC. In November 2006, after six months of aerobraking, it entered its final science orbit and began its primary science phase.

<span class="mw-page-title-main">Malin Space Science Systems</span> Private technology company

Malin Space Science Systems (MSSS) is a San Diego, California-based private technology company that designs, develops, and operates instruments and technical equipment to fly on unmanned spacecraft. MSSS is headed by chief scientist and CEO Michael C. Malin.

<span class="mw-page-title-main">HiRISE</span> Camera on board the Mars Reconnaissance Orbiter

High Resolution Imaging Science Experiment is a camera on board the Mars Reconnaissance Orbiter which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction of the University of Arizona's Lunar and Planetary Laboratory by Ball Aerospace & Technologies Corp. It consists of a 0.5 m (19.7 in) aperture reflecting telescope, the largest so far of any deep space mission, which allows it to take pictures of Mars with resolutions of 0.3 m/pixel, resolving objects below a meter across.

<span class="mw-page-title-main">Cydonia (Mars)</span> Area of Mars

Cydonia is a region on the planet Mars that has attracted both scientific and popular interest. The name originally referred to the albedo feature that was visible from earthbound telescopes. The area borders the plains of Acidalia Planitia and the highlands of Arabia Terra. The region includes the named features Cydonia Mensae, an area of flat-topped mesa-like features; Cydonia Colles, a region of small hills or knobs; and Cydonia Labyrinthus, a complex of intersecting valleys. As with other albedo features on Mars, the name Cydonia was drawn from classical antiquity, in this case from Kydonia, a historic polis on the island of Crete. Cydonia contains the "Face on Mars", located about halfway between the craters Arandas and Bamberg.

<span class="mw-page-title-main">Timeline of Mars Reconnaissance Orbiter</span> Timeline of important events in the history of the Mars Reconnaissance Orbiter

Timeline for the Mars Reconnaissance Orbiter (MRO) lists the significant events of the launch, aerobraking, and transition phases as well as subsequent significant operational mission events; by date and brief description.

Michael C. Malin is an American astronomer, space scientist, and CEO of Malin Space Science Systems. His cameras have been important scientific instruments in the exploration of Mars.

<span class="mw-page-title-main">Diacria quadrangle</span> Map of Mars

The Diacria quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northwestern portion of Mars’ western hemisphere and covers 180° to 240° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Diacria quadrangle is also referred to as MC-2. The Diacria quadrangle covers parts of Arcadia Planitia and Amazonis Planitia.

<span class="mw-page-title-main">Hellas quadrangle</span> Map of Mars

The Hellas quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Hellas quadrangle is also referred to as MC-28 . The Hellas quadrangle covers the area from 240° to 300° west longitude and 30° to 65° south latitude on the planet Mars. Within the Hellas quadrangle lies the classic features Hellas Planitia and Promethei Terra. Many interesting and mysterious features have been discovered in the Hellas quadrangle, including the giant river valleys Dao Vallis, Niger Vallis, Harmakhis, and Reull Vallis—all of which may have contributed water to a lake in the Hellas basin in the distant past. Many places in the Hellas quadrangle show signs of ice in the ground, especially places with glacier-like flow features.

<span class="mw-page-title-main">Mare Australe quadrangle</span> Map of Mars

The Mare Australe quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Mare Australe quadrangle is also referred to as MC-30. The quadrangle covers all the area of Mars south of 65°, including the South polar ice cap, and its surrounding area. The quadrangle's name derives from an older name for a feature that is now called Planum Australe, a large plain surrounding the polar cap. The Mars polar lander crash landed in this region.

<span class="mw-page-title-main">Dark slope streak</span> Surface feature of Mars

Dark slope streaks are narrow, avalanche-like features common on dust-covered slopes in the equatorial regions of Mars. They form in relatively steep terrain, such as along escarpments and crater walls. Although first recognized in Viking Orbiter images from the late 1970s, dark slope streaks were not studied in detail until higher-resolution images from the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) spacecraft became available in the late 1990s and 2000s.

<span class="mw-page-title-main">JunoCam</span>

JunoCam is the visible-light camera/telescope onboard NASA's Juno spacecraft currently orbiting Jupiter. The camera is operated by the JunoCam Digital Electronics Assembly (JDEA). Both the camera and JDEA were built by Malin Space Science Systems. JunoCam takes a swath of imaging as the spacecraft rotates; the camera is fixed to the spacecraft, so as it rotates, it gets one sweep of observation. It has a field of view of 58 degrees with four filters.

<span class="mw-page-title-main">Mars Orbiter Camera</span> Scientific instruments on board the Mars Observer and Mars Global Surveyor spacecraft

The Mars Orbiter Camera and Mars Observer Camera (MOC) were scientific instruments on board the Mars Observer and Mars Global Surveyor spacecraft. The camera was built by Malin Space Science Systems (MSSS) for NASA and the cost of the whole MOC scientific investigation project was about US$44 million, higher than anticipated in the budget.

<i>Curiosity</i> (rover) NASA robotic rover exploring the crater Gale on Mars

Curiosity is a car-sized Mars rover designed to explore the Gale crater on Mars as part of NASA's Mars Science Laboratory (MSL) mission. Curiosity was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and landed on Aeolis Palus inside Gale crater on Mars on August 6, 2012, 05:17:57 UTC. The Bradbury Landing site was less than 2.4 km (1.5 mi) from the center of the rover's touchdown target after a 560 million km (350 million mi) journey.

References

  1. "Spacecraft Parts: Instruments: MARCI". MARCI website. Archived from the original on May 5, 2006. Retrieved June 2, 2006.
  2. "Mars Color Imager: How MARCI Takes Color Images, MRO MARCI Release No. MARCI2-3, 13 April 2006". Archived from the original on May 13, 2013. Retrieved March 13, 2012.
  3. 1 2 3 4 "NASA - NSSDCA - Experiment - Details". nssdc.gsfc.nasa.gov. Retrieved 2 February 2023.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. "MARS RECONNAISSANCE ORBITER (MRO) MARS COLOR IMAGER (MARCI) INSTRUMENT DESCRIPTION". msss.com. Malin Space Science Systems. Retrieved 2 February 2023.
  5. 1 2 3 Malin, M.C.; Bell (III), J.F.; Calvin, W.M.; Caplinger, M.A.; Clancy, R.T.; Harberle, R.M.; James, P.B.; Lee, S.W.; Ravine, M.A.; Thomas, P.; Wolff, M.J. (2001). "Mars Color Imager (MARCI) on the Mars Climate Orbiter" (PDF). Journal of Geophysical Research. 106 (E8): 17, 651–17, 672. Bibcode:2001JGR...10617651M. doi:10.1029/1999JE001145 . Retrieved January 13, 2011.
  6. "Mars Color Imager (MARCI)". NASA / National Space Science Data Center. Retrieved February 19, 2011.