Marshallian demand function

Last updated

In microeconomics, a consumer's Marshallian demand function (named after Alfred Marshall) is the quantity they demand of a particular good as a function of its price, their income, and the prices of other goods, a more technical exposition of the standard demand function. It is a solution to the utility maximization problem of how the consumer can maximize their utility for given income and prices. A synonymous term is uncompensated demand function, because when the price rises the consumer is not compensated with higher nominal income for the fall in their real income, unlike in the Hicksian demand function. Thus the change in quantity demanded is a combination of a substitution effect and a wealth effect. Although Marshallian demand is in the context of partial equilibrium theory, it is sometimes called Walrasian demand as used in general equilibrium theory (named after Léon Walras).

Contents

According to the utility maximization problem, there are commodities with price vector and choosable quantity vector . The consumer has income , and hence a budget set of affordable packages

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p \cdot x = \sum_i^L p_i x_i } is the dot product of the price and quantity vectors. The consumer has a utility function

The consumer's Marshallian demand correspondence is defined to be

Revealed preference

Marshall's theory suggests that pursuit of utility is a motivational factor to a consumer which can be attained through the consumption of goods or service. The amount of consumer's utility is dependent on the level of consumption of a certain good, which is subject to the fundamental tendency of human nature and it is described as the law of diminishing marginal utility.

As utility maximum always exists, Marshallian demand correspondence must be nonempty at every value that corresponds with the standard budget set.

Uniqueness

is called a correspondence because in general it may be set-valued - there may be several different bundles that attain the same maximum utility. In some cases, there is a unique utility-maximizing bundle for each price and income situation; then, is a function and it is called the Marshallian demand function.

If the consumer has strictly convex preferences and the prices of all goods are strictly positive, then there is a unique utility-maximizing bundle. [1] :156 To prove this, suppose, by contradiction, that there are two different bundles, and , that maximize the utility. Then and are equally preferred. By definition of strict convexity, the mixed bundle is strictly better than . But this contradicts the optimality of .

Continuity

The maximum theorem implies that if:

then is an upper-semicontinuous correspondence. Moreover, if is unique, then it is a continuous function of and . [1] :156,506

Combining with the previous subsection, if the consumer has strictly convex preferences, then the Marshallian demand is unique and continuous. In contrast, if the preferences are not convex, then the Marshallian demand may be non-unique and non-continuous.

Homogeneity

The optimal Marshallian demand correspondence of a continuous utility function is a homogeneous function with degree zero. This means that for every constant

This is intuitively clear. Suppose and are measured in dollars. When , and are exactly the same quantities measured in cents. When prices and wealth go up by a factor a, the purchasing pattern of an economic agent remains constant. Obviously, expressing in different unit of measurement for prices and income should not affect the demand.

Demand curve

Marshall's theory exploits that demand curve represents individual's diminishing marginal values of the good. The theory insists that the consumer's purchasing decision is dependent on the gainable utility of a goods or services compared to the price since the additional utility that the consumer gain must be at least as great as the price. The following suggestion proposes that the price demanded is equal to the maximum price that the consumer would pay for an extra unit of good or service. Hence, the utility is held constant along the demand curve. When the marginal utility of income is constant, or its value is the same across individuals within a market demand curve, generating net benefits of purchased units, or consumer surplus is possible through adding up of demand prices.

The intersection point of 'Price' and 'Marginal utility = Demand' shows the optimal level of individual's consumption. Marginal utility and demand.png
The intersection point of 'Price' and 'Marginal utility = Demand' shows the optimal level of individual's consumption.

Examples

In the following examples, there are two commodities, 1 and 2.

1. The utility function has the Cobb–Douglas form:

The constrained optimization leads to the Marshallian demand function:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): x^*(p_1,p_2,I) = \left(\frac{\alpha I}{(\alpha+\beta)p_1}, \frac{\beta I}{(\alpha+\beta)p_2}\right).

2. The utility function is a CES utility function:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle u(x_1,x_2) = \left[ \frac{x_1^{\delta}}{\delta} + \frac{x_2^{\delta}}{\delta} \right]^{\frac{1}{\delta}}.}

Then

In both cases, the preferences are strictly convex, the demand is unique and the demand function is continuous.

3. The utility function has the linear form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle u(x_1,x_2) = x_1 + x_2.}

The utility function is only weakly convex, and indeed the demand is not unique: when , the consumer may divide his income in arbitrary ratios between product types 1 and 2 and get the same utility.

4. The utility function exhibits a non-diminishing marginal rate of substitution:

The utility function is not convex, and indeed the demand is not continuous: when , the consumer demands only product 1, and when , the consumer demands only product 2 (when the demand correspondence contains two distinct bundles: either buy only product 1 or buy only product 2).

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function. In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines. The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function.

<span class="mw-page-title-main">Sigmoid function</span> Mathematical function having a characteristic "S"-shaped curve or sigmoid curve

A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve.

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.

<span class="mw-page-title-main">Egyptian fraction</span> Finite sum of distinct unit fractions

An Egyptian fraction is a finite sum of distinct unit fractions, such as

In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers.

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some Failed to parse : M>0 such that for all

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Sedimentation equilibrium in a suspension of different particles, such as molecules, exists when the rate of transport of each material in any one direction due to sedimentation equals the rate of transport in the opposite direction due to diffusion. Sedimentation is due to an external force, such as gravity or centrifugal force in a centrifuge.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

<span class="mw-page-title-main">Statistical learning theory</span> Framework for machine learning

Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data. Statistical learning theory has led to successful applications in fields such as computer vision, speech recognition, and bioinformatics.

In microeconomics, a consumer's Hicksian demand function or compensated demand function for a good is his quantity demanded as part of the solution to minimizing his expenditure on all goods while delivering a fixed level of utility. Essentially, a Hicksian demand function shows how an economic agent would react to the change in the price of a good, if the agent's income was compensated to guarantee the agent the same utility previous to the change in the price of the good—the agent will remain on the same indifference curve before and after the change in the price of the good. The function is named after John Hicks.

<span class="mw-page-title-main">Conway's Soldiers</span> Mathematical puzzle by John Conway

Conway's Soldiers or the checker-jumping problem is a one-person mathematical game or puzzle devised and analyzed by mathematician John Horton Conway in 1961. A variant of peg solitaire, it takes place on an infinite checkerboard. The board is divided by a horizontal line that extends indefinitely. Above the line are empty cells and below the line are an arbitrary number of game pieces, or "soldiers". As in peg solitaire, a move consists of one soldier jumping over an adjacent soldier into an empty cell, vertically or horizontally, and removing the soldier which was jumped over. The goal of the puzzle is to place a soldier as far above the horizontal line as possible.

In combinatorial mathematics, a q-exponential is a q-analog of the exponential function, namely the eigenfunction of a q-derivative. There are many q-derivatives, for example, the classical q-derivative, the Askey-Wilson operator, etc. Therefore, unlike the classical exponentials, q-exponentials are not unique. For example, is the q-exponential corresponding to the classical q-derivative while are eigenfunctions of the Askey-Wilson operators.

The sensitivity index or discriminability index or detectability index is a dimensionless statistic used in signal detection theory. A higher index indicates that the signal can be more readily detected.

A photo-Carnot engine is a Carnot cycle engine in which the working medium is a photon inside a cavity with perfectly reflecting walls. Radiation is the working fluid, and the piston is driven by radiation pressure.

In mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. Basic examples include the real numbers, the complex numbers, and complete valued fields.

In the field of mathematical analysis, a general Dirichlet series is an infinite series that takes the form of

Abelian varieties are a natural generalization of elliptic curves, including algebraic tori in higher dimensions. Just as elliptic curves have a natural moduli space Failed to parse : {\displaystyle \mathcal{M}_{1,1}} over characteristic 0 constructed as a quotient of the upper-half plane by the action of , there is an analogous construction for abelian varieties using the Siegel upper half-space and the symplectic group .

<span class="mw-page-title-main">Rayleigh–Kuo criterion</span>

The Rayleigh–Kuo criterion is a stability condition for a fluid. This criterion determines whether or not a barotropic instability can occur, leading to the presence of vortices. The Kuo criterion states that for barotropic instability to occur, the gradient of the absolute vorticity must change its sign at some point within the boundaries of the current. Note that this criterion is a necessary condition, so if it does not hold it is not possible for a barotropic instability to form. But it is not a sufficient condition, meaning that if the criterion is met, this does not automatically mean that the fluid is unstable. If the criterion is not met, it is certain that the flow is stable.

References

  1. 1 2 Varian, Hal (1992). Microeconomic Analysis (Third ed.). New York: Norton. ISBN   0-393-95735-7.