Constant elasticity of substitution

Last updated

Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions. Several economists have featured in the topic and have contributed in the final finding of the constant. They include Tom McKenzie, John Hicks and Joan Robinson. The vital economic element of the measure is that it provided the producer a clear picture of how to move between different modes or types of production.

Contents

Specifically, it arises in a particular type of aggregator function which combines two or more types of consumption goods, or two or more types of production inputs into an aggregate quantity. This aggregator function exhibits constant elasticity of substitution.

CES production function

Despite having several factors of production in substitutability, the most common are the forms of elasticity of substitution. On the contrary of restricting direct empirical evaluation, the constant Elasticity of Substitution are simple to use and hence are widely used. [1] McFadden states that;

The constant E.S assumption is a restriction on the form of production possibilities, and one can characterize the class of production functions which have this property. This has been done by Arrow-Chenery-Minhas-Solow for the two-factor production case. [1]

The CES production function is a neoclassical production function that displays constant elasticity of substitution. In other words, the production technology has a constant percentage change in factor (e.g. labour and capital) proportions due to a percentage change in marginal rate of technical substitution. The two factor (capital, labor) CES production function introduced by Solow, [2] and later made popular by Arrow, Chenery, Minhas, and Solow is: [3] [4] [5] [6]

where

As its name suggests, the CES production function exhibits constant elasticity of substitution between capital and labor. Leontief, linear and Cobb–Douglas functions are special cases of the CES production function. That is,

The general form of the CES production function, with n inputs, is: [7]

where

Extending the CES (Solow) functional form to accommodate multiple factors of production creates some problems. However, there is no completely general way to do this. Uzawa showed the only possible n-factor production functions (n>2) with constant partial elasticities of substitution require either that all elasticities between pairs of factors be identical, or if any differ, these all must equal each other and all remaining elasticities must be unity. [8] This is true for any production function. This means the use of the CES functional form for more than 2 factors will generally mean that there is not constant elasticity of substitution among all factors.

Nested CES functions are commonly found in partial equilibrium and general equilibrium models. Different nests (levels) allow for the introduction of the appropriate elasticity of substitution.

CES utility function

The same CES functional form arises as a utility function in consumer theory. For example, if there exist types of consumption goods , then aggregate consumption could be defined using the CES aggregator:

Here again, the coefficients are share parameters, and is the elasticity of substitution. Therefore, the consumption goods are perfect substitutes when approaches infinity and perfect complements when approaches zero. In the case where approaches one is again a limiting case where L'Hôpital's Rule applies. The CES aggregator is also sometimes called the Armington aggregator, which was discussed by Armington (1969). [9]

CES utility functions are a special case of homothetic preferences.

The following is an example of a CES utility function for two goods, and , with equal shares: [10] :112

The expenditure function in this case is:

The indirect utility function is its inverse:

The demand functions are:

A CES utility function is one of the cases considered by Dixit and Stiglitz (1977) in their study of optimal product diversity in a context of monopolistic competition. [11]

Note the difference between CES utility and isoelastic utility: the CES utility function is an ordinal utility function that represents preferences on sure consumption commodity bundles, while the isoelastic utility function is a cardinal utility function that represents preferences on lotteries. A CES indirect (dual) utility function has been used to derive utility-consistent brand demand systems where category demands are determined endogenously by a multi-category, CES indirect (dual) utility function. It has also been shown that CES preferences are self-dual and that both primal and dual CES preferences yield systems of indifference curves that may exhibit any degree of convexity. [12]

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Indifference curve</span> Concept in economics

In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Boundary layer</span> Layer of fluid in the immediate vicinity of a bounding surface

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

<span class="mw-page-title-main">Cobb–Douglas production function</span> Macroeconomic formula that describes productivity

In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs and the amount of output that can be produced by those inputs. The Cobb–Douglas form was developed and tested against statistical evidence by Charles Cobb and Paul Douglas between 1927 and 1947; according to Douglas, the functional form itself was developed earlier by Philip Wicksteed.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Physical (natural philosophy) interpretation: S any surface, V any volume, etc.. Incl. variable to time, position, etc.

The second polar moment of area, also known as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (deflection), in objects with an invariant cross-section and no significant warping or out-of-plane deformation. It is a constituent of the second moment of area, linked through the perpendicular axis theorem. Where the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis. Similar to planar second moment of area calculations, the polar second moment of area is often denoted as . While several engineering textbooks and academic publications also denote it as or , this designation should be given careful attention so that it does not become confused with the torsion constant, , used for non-cylindrical objects.

The Ramsey–Cass–Koopmans model, or Ramsey growth model, is a neoclassical model of economic growth based primarily on the work of Frank P. Ramsey, with significant extensions by David Cass and Tjalling Koopmans. The Ramsey–Cass–Koopmans model differs from the Solow–Swan model in that the choice of consumption is explicitly microfounded at a point in time and so endogenizes the savings rate. As a result, unlike in the Solow–Swan model, the saving rate may not be constant along the transition to the long run steady state. Another implication of the model is that the outcome is Pareto optimal or Pareto efficient.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

The derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

Computational Fluid Dynamics (CFD) modeling and simulation for phase change materials (PCMs) is a technique to analyze the performance and behavior of PCMs. The CFD models have been successful in studying and analyzing the air quality, natural ventilation and stratified ventilation, air flow initiated by buoyancy forces and temperature space for the systems integrated with PCMs. Simple shapes like flat plates, cylinders or annular tubes, fins, macro- and micro-encapsulations with containers of different shape are often modeled in CFD software's to study.

In target tracking, the multi-fractional order estimator (MFOE) is an alternative to the Kalman filter. The MFOE is focused strictly on simple and pragmatic fundamentals along with the integrity of mathematical modeling. Like the KF, the MFOE is based on the least squares method (LSM) invented by Gauss and the orthogonality principle at the center of Kalman's derivation. Optimized, the MFOE yields better accuracy than the KF and subsequent algorithms such as the extended KF and the interacting multiple model (IMM). The MFOE is an expanded form of the LSM, which effectively includes the KF and ordinary least squares (OLS) as subsets. OLS is revolutionized in for application in econometrics. The MFOE also intersects with signal processing, estimation theory, economics, finance, statistics, and the method of moments. The MFOE offers two major advances: (1) minimizing the mean squared error (MSE) with fractions of estimated coefficients and (2) describing the effect of deterministic OLS processing of statistical inputs

References

  1. 1 2 McFadden, Daniel (June 1963). "Constant Elasticity of Substitution Production Functions". The Review of Economic Studies. 30 (2): 73–83. doi:10.2307/2295804. ISSN   0034-6527. JSTOR   2295804.
  2. Solow, R.M (1956). "A contribution to the theory of economic growth". The Quarterly Journal of Economics. 70 (1): 65–94. doi:10.2307/1884513. hdl: 10338.dmlcz/143862 . JSTOR   1884513.
  3. Arrow, K. J.; Chenery, H. B.; Minhas, B. S.; Solow, R. M. (1961). "Capital-labor substitution and economic efficiency". Review of Economics and Statistics. 43 (3): 225–250. doi:10.2307/1927286. JSTOR   1927286.
  4. Jorgensen, Dale W. (2000). Econometrics, vol. 1: Econometric Modelling of Producer Behavior. Cambridge, MA: MIT Press. p. 2. ISBN   978-0-262-10082-3.
  5. Klump, R; McAdam, P; Willman, A. (2007). "Factor Substitution and Factor Augmenting Technical Progress in the US: A Normalized Supply-Side System Approach". Review of Economics and Statistics. 89 (1): 183–192. doi:10.1162/rest.89.1.183. hdl: 10419/152801 . S2CID   57570638.
  6. de La Grandville, Olivier (2016). Economic Growth: A Unified Approach. Cambridge University Press. doi:10.1017/9781316335703. ISBN   9781316335703.
  7. http://www.econ.ucsb.edu/~tedb/Courses/GraduateTheoryUCSB/elasticity%20of%20substitutionrevised.tex.pdf [ bare URL PDF ]
  8. Uzawa, H (1962). "Production functions with constant elasticities of substitution". Review of Economic Studies. 29 (4): 291–299. doi:10.2307/2296305. JSTOR   2296305.
  9. Armington, P. S. (1969). "A theory of demand for products distinguished by place of production". IMF Staff Papers. 16 (1): 159–178. doi:10.2307/3866403. JSTOR   3866403.
  10. Varian, Hal (1992). Microeconomic Analysis (Third ed.). New York: Norton. ISBN   0-393-95735-7.
  11. Dixit, Avinash; Stiglitz, Joseph (1977). "Monopolistic Competition and Optimum Product Diversity". American Economic Review . 67 (3): 297–308. JSTOR   1831401.
  12. Baltas, George (2001). "Utility-Consistent Brand Demand Systems with Endogenous Category Consumption: Principles and Marketing Applications". Decision Sciences. 32 (3): 399–421. doi:10.1111/j.1540-5915.2001.tb00965.x.