Constant elasticity of substitution (CES) is a common specification of many production functions and utility functions in neoclassical economics. CES holds that the ability to substitute one input factor with another (for example labour with capital) to maintain the same level of production stays constant over different production levels. For utility functions, CES means the consumer has constant preferences of how they would like to substitute different goods (for example labour with consumption) while keeping the same level of utility, for all levels of utility. What this means is that both producers and consumers have similar input structures and preferences no matter the level of output or utility.
The vital economic element of the measure is that it provided the producer a clear picture of how to move between different modes or types of production, for example between modes of production relying on more labour. Several economists have featured in the topic and have contributed in the final finding of the constant. They include Tom McKenzie, John Hicks and Joan Robinson.
Specifically, it arises in a particular type of aggregator function which combines two or more types of consumption goods, or two or more types of production inputs into an aggregate quantity. This aggregator function exhibits constant elasticity of substitution.
Despite having several factors of production in substitutability, the most common are the forms of elasticity of substitution. On the contrary of restricting direct empirical evaluation, the constant Elasticity of Substitution are simple to use and hence are widely used. [1] McFadden states that;
The constant E.S assumption is a restriction on the form of production possibilities, and one can characterize the class of production functions which have this property. This has been done by Arrow-Chenery-Minhas-Solow for the two-factor production case. [1]
The CES production function is a neoclassical production function that displays constant elasticity of substitution. In other words, the production technology has a constant percentage change in factor (e.g. labour and capital) proportions due to a percentage change in marginal rate of technical substitution. The two factor (capital, labor) CES production function introduced by Solow, [2] and later made popular by Arrow, Chenery, Minhas, and Solow is: [3] [4] [5] [6]
where
As its name suggests, the CES production function exhibits constant elasticity of substitution between capital and labor. Leontief, linear and Cobb–Douglas functions are special cases of the CES production function. That is,
The general form of the CES production function, with n inputs, is: [7]
where
Extending the CES (Solow) functional form to accommodate multiple factors of production creates some problems. However, there is no completely general way to do this. Uzawa showed the only possible n-factor production functions (n>2) with constant partial elasticities of substitution require either that all elasticities between pairs of factors be identical, or if any differ, these all must equal each other and all remaining elasticities must be unity. [8] This is true for any production function. This means the use of the CES functional form for more than 2 factors will generally mean that there is not constant elasticity of substitution among all factors.
Nested CES functions are commonly found in partial equilibrium and general equilibrium models. Different nests (levels) allow for the introduction of the appropriate elasticity of substitution.
The same CES functional form arises as a utility function in consumer theory. For example, if there exist types of consumption goods , then aggregate consumption could be defined using the CES aggregator:
Here again, the coefficients are share parameters, and is the elasticity of substitution. Therefore, the consumption goods are perfect substitutes when approaches infinity and perfect complements when approaches zero. In the case where approaches one is again a limiting case where L'Hôpital's Rule applies. The CES aggregator is also sometimes called the Armington aggregator, which was discussed by Armington (1969). [9]
CES utility functions are a special case of homothetic preferences.
The following is an example of a CES utility function for two goods, and , with equal shares: [10] : 112
The expenditure function in this case is:
The indirect utility function is its inverse:
The demand functions are:
A CES utility function is one of the cases considered by Dixit and Stiglitz (1977) in their study of optimal product diversity in a context of monopolistic competition. [11]
Note the difference between CES utility and isoelastic utility: the CES utility function is an ordinal utility function that represents preferences on sure consumption commodity bundles, while the isoelastic utility function is a cardinal utility function that represents preferences on lotteries. A CES indirect (dual) utility function has been used to derive utility-consistent brand demand systems where category demands are determined endogenously by a multi-category, CES indirect (dual) utility function. It has also been shown that CES preferences are self-dual and that both primal and dual CES preferences yield systems of indifference curves that may exhibit any degree of convexity. [12]
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson who published it in 1823.
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of children from a primary school to have a Pearson correlation coefficient significantly greater than 0, but less than 1.
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.
In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs and the amount of output that can be produced by those inputs. The Cobb–Douglas form was developed and tested against statistical evidence by Charles Cobb and Paul Douglas between 1927 and 1947; according to Douglas, the functional form itself was developed earlier by Philip Wicksteed.
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.
The Ramsey–Cass–Koopmans model, or Ramsey growth model, is a neoclassical model of economic growth based primarily on the work of Frank P. Ramsey, with significant extensions by David Cass and Tjalling Koopmans. The Ramsey–Cass–Koopmans model differs from the Solow–Swan model in that the choice of consumption is explicitly microfounded at a point in time and so endogenizes the savings rate. As a result, unlike in the Solow–Swan model, the saving rate may not be constant along the transition to the long run steady state. Another implication of the model is that the outcome is Pareto optimal or Pareto efficient.
Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.
Elasticity of substitution is the ratio of percentage change in capital-labour ratio with the percentage change in Marginal Rate of Technical Substitution. In a competitive market, it measures the percentage change in the two inputs used in response to a percentage change in their prices. It gives a measure of the curvature of an isoquant, and thus, the substitutability between inputs, i.e. how easy it is to substitute one input for the other.
In economics, Epstein–Zin preferences refers to a specification of recursive utility.
In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest. This misleading information can be avoided by controlling for the confounding variable, which is done by computing the partial correlation coefficient. This is precisely the motivation for including other right-side variables in a multiple regression; but while multiple regression gives unbiased results for the effect size, it does not give a numerical value of a measure of the strength of the relationship between the two variables of interest.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
In consumer theory, a consumer's preferences are called homothetic if they can be represented by a utility function which is homogeneous of degree 1. For example, in an economy with two goods , homothetic preferences can be represented by a utility function that has the following property: for every :
In target tracking, the multi-fractional order estimator (MFOE) is an alternative to the Kalman filter. The MFOE is focused strictly on simple and pragmatic fundamentals along with the integrity of mathematical modeling. Like the KF, the MFOE is based on the least squares method (LSM) invented by Gauss and the orthogonality principle at the center of Kalman's derivation. Optimized, the MFOE yields better accuracy than the KF and subsequent algorithms such as the extended KF and the interacting multiple model (IMM). The MFOE is an expanded form of the LSM, which effectively includes the KF and ordinary least squares (OLS) as subsets. OLS is revolutionized in for application in econometrics. The MFOE also intersects with signal processing, estimation theory, economics, finance, statistics, and the method of moments. The MFOE offers two major advances: (1) minimizing the mean squared error (MSE) with fractions of estimated coefficients and (2) describing the effect of deterministic OLS processing of statistical inputs
Becker–Morduchow–Libby solution is an exact solution of the compressible Navier–Stokes equations, that describes the structure of one-dimensional shock waves. The solution was discovered in a restrictive form by Richard Becker in 1922, which was generalized by Morris Morduchow and Paul A. Libby in 1949. The solution was also discovered independently by M. Roy and L. H. Thomas in 1944 The solution showed that there is a non-monotonic variation of the entropy across the shock wave. Before these works, Lord Rayleigh obtained solutions in 1910 for fluids with viscosity but without heat conductivity and for fluids with heat conductivity but without viscosity. Following this, in the same year G. I. Taylor solved the whole problem for weak shock waves by taking both viscosity and heat conductivity into account.