Martin R. Ralph

Last updated
Martin R. Ralph
Alma mater Stanford University (B.A.)
University of Oregon University of Virginia
Scientific career
Fields Biology, Psychology
Doctoral advisor Michael Menaker

Martin R. Ralph is a circadian biologist who serves as a professor in the Psychology Department at the University of Toronto. His research primarily focuses on circadian rhythmicity in the fields of neuroscience, psychology, and endocrinology. His most notable work has been on the suprachiasmatic nucleus, now recognized as the central circadian pacemaker in mammals, but has also investigated circadian rhythms in the context of time, memory, and light.

Contents

Early education

Martin Ralph attended Stanford University from 1972 to 1976 where he earned his Bachelor's Degree in Biology. He then received his Doctorate while attending the University of Oregon from 1982 to 1986. [1] After earning his Ph.D, he stayed and worked under circadian biologist Dr. Michael Menaker at the University of Virginia where he most notably helped discover the tau mutation in golden hamsters. In 1998, he joined the University of Toronto as a Professor of Psychology.

Scientific contributions

Discovery and genetic basis of the tau mutant hamster

While working as a grad student under Dr. Michael Menaker, one of the modern grandfathers of circadian biology, he discovered a golden hamster that had a period noticeably less than 24 hours. The motor activity rhythms of Golden hamsters typically follow periods of 24 hours, with little variation. [2] After further breeding these mutant hamsters, he noticed that homozygous mutants had a 20 hour period of daily activity rhythms and heterozygous mutants had a 22 hours period. [3] In circadian biology, tau (τ), denoted the duration of a rhythm in an organism, so a circadian rhythm has a tau value near 24 hours. Given the differences in period, he decided to name this mutant strain the “tau hamster.” This hamster was the first evidence of a genetic basis to circadian rhythms in mammals, and it has been used as a model to further study the genetic basis of circadian rhythmicity and the rhythmicity in specific proteins and behaviors besides locomotion such as body size [4] and melatonin expression. [5]

He later worked with a team of circadian biologists led by Dr. Joseph Takahashi to identify the location of the mutation responsible for tau mutant hamster's 20 hour period. They used genetically directed representational difference analysis (GDRDA), an assay used to connect genetic mutations to a specific trait, [6] to discern the genetic differences between the mutant and wild-type hamsters. They localized the area of genetic differences to chromosome 22 in the region encoding the casein kinase 1 epsilon (CK1ε) gene. [7] They showed that CK1ε interacts with the PERIOD gene, which has been established as a mammalian circadian gene, [8] and this activity was decreased in the mutant version of CK1ε, presenting an explanation for the behavior of the tau mutant hamster.

Identification of the suprachiasmatic nucleus as a circadian pacemaker

One of the first uses of the mutant (tau) golden hamster was the identification of the suprachiasmatic nucleus (SCN) as an important pacemaker of locomotive daily rhythms. When the SCN was ablated in wild-type hamsters, they lost rhythmic locomotor activity. They then transplanted a new SCN from a donor hamster and observed restored rhythmicity in the receiving hamster with the same period as the donor hamster. If the donor was wild-type, they observed a 24 hour period, and if the donor was homozygous mutant, they observed a 20 hour period. This experiment proved both the necessity and sufficiency of the SCN to generate daily sleep-wake rhythms in these hamsters. [9] Circadian researchers continued to study the SCN, and this structure is now recognized as the primary circadian pacemaker in mammals.

Determining the impact of masking by light

Some of Dr. Ralph’s most cited work includes his contributions that showed masking by light. Masking refers to the ability for external cues such as the light that can influence animal behavior by being integrated into the circadian rhythm. As the animal continues to have its innate biological clock, other exogenous cues are factored in that enable the animal to respond right away to environmental changes. For example, having a pulse of light during a diurnal animal’s rest phase could lead to a change in period and rhythmicity, even for some time after the short stimulus. [10] In his work done with Dr. Gary Pickard in the Menaker lab, Dr. Ralph studied mice which had their intergeniculate leaflet (IGL), a retinal pathway important for perceiving light, surgically removed. [11]

Overall, they found that lesioned mice had increased phase delays and were less responsive to phase shifts due to light pulses. Additionally, the active period of the mice did not lengthen with constant light conditions. These data suggested that the IGL likely played a major role in feeding light information back to the suprachiasmatic nucleus. Later experiments done with the golden hamster added to these results and suggested that the circadian response is dependent on the “environmental situation” at which the light is given. [12]

GABA regulation on light-dependent responses

While working in the Menaker lab, Ralph also investigated GABA regulation of circadian responses to light. They found that the GABA antagonist bicuculline blocks phase delays and the benzodiazepine diazepam (a potentiator of GABA activity) blocks phase advances in golden hamsters exposed to light. The bicuculline-induced blockade of phase delays was decreased by activators of GABA activity, while the diazepam-induced blockade of phase advances could be decreased by competitive and noncompetitive antagonists of GABA. These findings suggest that the GABA-benzodiazepine receptor-ionophore complex is likely the site of action for the circadian alterations of these drugs. Interestingly, they found that other GABA agonists and antagonists did not produce the same blocking of phase advances and phase delays that diazepam and bicuculline did, respectively, suggesting an alternative mechanism other than changes in chloride conductance. [13]

Circadian effects on learning and memory

Another area of Dr. Ralph’s research is on the circadian rhythm’s effect on learning. Working on mice, Dr. Ralph and other researchers found that the timing of an important event is encoded by a condition entrainable oscillator that is set by an acute change in dopamine transmission at the time of the event, allowing animals to learn and remember the time of day that significant conditions occur and anticipate recurrence at 24 hour intervals. Dr. Ralph has also found that circadian modulation of conditioned place avoidance in hamsters does not require the SCN (suprachiasmatic nucleus), suggesting that memory for time of day may require a circadian oscillator separate from the SCN. [14] [15]

Circadian effects on longevity

Another area of Martin’s research focuses on the impact of circadian rhythm disruption on longevity. While the functional role of circadian rhythms had been well established, little was known about the adaptiveness of daily oscillations in physiology and behavior in organisms. He found that the tau mutant hamster had significantly reduced lifespans compared to wild-type and homozygous tau mutant hamsters. Transplanting fetal brain grafts with SCN reversed the decline in behavioral rhythmicity naturally associated with age and extended longevity by 20% in adult hamsters. In fact, 11 of the hamsters that received SCN grafting outlived 50% of all controls, with grafting of other brain tissue types resulting in similar life expectancy as controls. These findings suggest that clock speed slows down with age and decreased behavioral rhythms (measured as running time) are highly predictive of lifespan within a few weeks. [16]

Other neural transplantation experiments

Ralph's SCN transplantation study not only showed the role of the SCN, but it also showed the ability of a neural transplant to restore lost function. This same procedure is being explored as a treatment for neurodegenerative diseases. A study conducted in 2020 explored whether the transplantation of functional tissue from induced-pluripotent stem cells could restore function for a patient suffering from Parkinson’s disease. After confirming that the graft successfully survived, they found that over the course of two years the patient’s symptoms improved or remained constant. It is worth mentioning that this was only conducted in one patient. [17] A recent meta-analysis (2022) of neural transplantation studies showed that replacing dopamine-producing cells with stem-cell derived equivalents is not only safe for patients but can improve motor function and daily living ability. [18] Another study similar to Dr. Ralph’s work includes work done in 2014 which showed that transplantation of interneurons led to the restoration of memory and cognitive function in an Alzheimer’s disease mouse model In particular, the transplantation of inhibitory interneurons shed light on the role inhibition plays in generating normal function through interplay with excitatory neurons. [19]

Current work

Ralph continued his interest in circadian research at the University of Toronto, specifically in smaller mammalian models of mice and hamsters. His lab investigates the behavior of proteins that regulate and exhibit circadian rhythms and how both zeitgebers and protein mutations affect their expression and animal behavior. He has studied these topics primarily in the fields of neuroscience and psychology. [20] Most recently, his lab studied how circadian proteins are modulated for specific memory tasks independent of the overall circadian clock. They observed that implicit time-memory, an unconscious memory of a specific time that can be anticipated during which a significant event repeatedly occurs, modulates PER2 mRNA expression only in the striatum of the brain and without affecting the overall circadian clock. This research provides evidence to begin answering the question of where time memory anatomically is located in the brain, which is currently unknown. [21]

Honors and awards

Member of the Society for Research on Biological Rhythms since 1988. [20]

A.P. Sloan Foundation Research Fellowship in October 1991 [22]

Member of the Canadian Society for Chronobiology since 2013. [20]

Board Member of the European Biological Rhythms Society since 2011 [23]

Related Research Articles

<span class="mw-page-title-main">Chronobiology</span> Field of biology

Chronobiology is a field of biology that examines timing processes, including periodic (cyclic) phenomena in living organisms, such as their adaptation to solar- and lunar-related rhythms. These cycles are known as biological rhythms. Chronobiology comes from the ancient Greek χρόνος, and biology, which pertains to the study, or science, of life. The related terms chronomics and chronome have been used in some cases to describe either the molecular mechanisms involved in chronobiological phenomena or the more quantitative aspects of chronobiology, particularly where comparison of cycles between organisms is required.

<span class="mw-page-title-main">Suprachiasmatic nucleus</span> Part of the brains hypothalamus

The suprachiasmatic nucleus or nuclei (SCN) is a small region of the brain in the hypothalamus, situated directly above the optic chiasm. It is the principal circadian pacemaker in mammals, responsible for generating circadian rhythms. Reception of light inputs from photosensitive retinal ganglion cells allow it to coordinate the subordinate cellular clocks of the body and entrain to the environment. The neuronal and hormonal activities it generates regulate many different body functions in an approximately 24-hour cycle.

The Casein kinase 1 family of protein kinases are serine/threonine-selective enzymes that function as regulators of signal transduction pathways in most eukaryotic cell types. CK1 isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling of transcription factors, DNA repair, and DNA transcription.

Timeless (tim) is a gene in multiple species but is most notable for its role in Drosophila for encoding TIM, an essential protein that regulates circadian rhythm. Timeless mRNA and protein oscillate rhythmically with time as part of a transcription-translation negative feedback loop involving the period (per) gene and its protein.

Period (per) is a gene located on the X chromosome of Drosophila melanogaster. Oscillations in levels of both per transcript and its corresponding protein PER have a period of approximately 24 hours and together play a central role in the molecular mechanism of the Drosophila biological clock driving circadian rhythms in eclosion and locomotor activity. Mutations in the per gene can shorten (perS), lengthen (perL), and even abolish (per0) the period of the circadian rhythm.

<span class="mw-page-title-main">PER3</span> Protein and coding gene in humans

The PER3 gene encodes the period circadian protein homolog 3 protein in humans. PER3 is a paralog to the PER1 and PER2 genes. It is a circadian gene associated with delayed sleep phase syndrome in humans.

<span class="mw-page-title-main">PER2</span> Protein-coding gene in the species Homo sapiens

PER2 is a protein in mammals encoded by the PER2 gene. PER2 is noted for its major role in circadian rhythms.

<span class="mw-page-title-main">Period circadian protein homolog 1</span> Protein-coding gene in the species Homo sapiens

Period circadian protein homolog 1 is a protein in humans that is encoded by the PER1 gene.

<span class="mw-page-title-main">Jürgen Aschoff</span> German physician, biologist and behavioral physiologist

Jürgen Walther Ludwig Aschoff was a German physician, biologist and behavioral physiologist. Together with Erwin Bünning and Colin Pittendrigh, he is considered to be a co-founder of the field of chronobiology.

Joseph S. Takahashi is a Japanese American neurobiologist and geneticist. Takahashi is a professor at University of Texas Southwestern Medical Center as well as an investigator at the Howard Hughes Medical Institute. Takahashi's research group discovered the genetic basis for the mammalian circadian clock in 1994 and identified the Clock gene in 1997. Takahashi was elected to the National Academy of Sciences in 2003.

<span class="mw-page-title-main">Russell Foster</span>

Russell Grant Foster, CBE, FRS FMedSci is a British professor of circadian neuroscience, the Director of the Nuffield Laboratory of Ophthalmology and the Head of the Sleep and Circadian Neuroscience Institute (SCNi). He is also a Nicholas Kurti Senior Fellow at Brasenose College at the University of Oxford. Foster and his group are credited with key contributions to the discovery of the non-rod, non-cone, photosensitive retinal ganglion cells (pRGCs) in the mammalian retina which provide input to the circadian rhythm system. He has written and co-authored over a hundred scientific publications.

Michael Menaker, was an American chronobiologist who was Commonwealth Professor of Biology at University of Virginia. His research focused on circadian rhythmicity of vertebrates, including contributing to an understanding of light input pathways on extra-retinal photoreceptors of non-mammalian vertebrates, discovering a mammalian mutation for circadian rhythmicity, and locating a circadian oscillator in the pineal gland of bird. He wrote almost 200 scientific publications.

Hitoshi Okamura is a Japanese scientist who specializes in chronobiology. He is currently a professor of Systems Biology at Kyoto University Graduate School of Pharmaceutical Sciences and the Research Director of the Japan Science Technology Institute, CREST. Okamura's research group cloned mammalian Period genes, visualized clock oscillation at the single cell level in the central clock of the SCN, and proposed a time-signal neuronal pathway to the adrenal gland. He received a Medal of Honor with Purple Ribbon in 2007 for his research and was awarded Aschoff's Ruler for his work on circadian rhythms in rodents. His lab recently revealed the effects of m6A mRNA methylation on the circadian clock, neuronal communications in jet lag, and the role of dysregulated clocks in salt-induced hypertension.

Robert Y. Moore is an American neurologist with interests in disorders of biological rhythms, movement disorders, and behavioral neurology. He is credited with discovering the function of the suprachiasmatic nucleus (SCN) as the circadian clock, as well as, describing its organization. He is also credited with establishing the role of the mammalian retinohypothalamic tract (RHT) as a photic entrainment pathway. Moore cin 2017 serves as a professor of neurology, with a secondary in psychiatry and neuroscience at the University of Pittsburgh, and as co-director of the National Parkinson Foundation Center of Excellence at the University of Pittsburgh.

In the field of chronobiology, the dual circadian oscillator model refers to a model of entrainment initially proposed by Colin Pittendrigh and Serge Daan. The dual oscillator model suggests the presence of two coupled circadian oscillators: E (evening) and M (morning). The E oscillator is responsible for entraining the organism’s evening activity to dusk cues when the daylight fades, while the M oscillator is responsible for entraining the organism’s morning activity to dawn cues, when daylight increases. The E and M oscillators operate in an antiphase relationship. As the timing of the sun's position fluctuates over the course of the year, the oscillators' periods adjust accordingly. Other oscillators, including seasonal oscillators, have been found to work in conjunction with circadian oscillators in order to time different behaviors in organisms such as fruit flies.

<span class="mw-page-title-main">Sato Honma</span>

Sato Honma is a Japanese chronobiologist who researches the biological mechanisms of circadian rhythms. She mainly collaborates with Ken-Ichi Honma on publications, and both of their primary research focuses are the human circadian clock under temporal isolation and the mammalian suprachiasmatic nucleus (SCN), its components, and associates. Honma is a retired professor at the Hokkaido University School of Medicine in Sapporo, Japan. She received her Ph.D. in physiology from Hokkaido University. She taught physiology at the School of Medicine and then at the Research and Education Center for Brain Science at Hokkaido University. She is currently the director at the Center for Sleep and Circadian Rhythm Disorders at Sapporo Hanazono Hospital and works as a somnologist.

Johanna H. Meijer is a Dutch scientist who has contributed significantly to the field of chronobiology. Meijer has made notable contributions to the understanding of the neural and molecular mechanisms of circadian pacemakers. She is known for her extensive studies of photic and non-photic effects on the mammalian circadian clocks. Notably, Meijer is the 2016 recipient of the Aschoff and Honma Prize, one of the most prestigious international prizes in the circadian research field. In addition to still unraveling neuronal mechanisms of circadian clocks and their applications to health, Meijer's lab now studies the effects of modern lifestyles on our circadian rhythm and bodily functions.

The food-entrainable oscillator (FEO) is a circadian clock that can be entrained by varying the time of food presentation. It was discovered when a rhythm was found in rat activity. This was called food anticipatory activity (FAA), and this is when the wheel-running activity of mice decreases after feeding, and then rapidly increases in the hours leading up to feeding. FAA appears to be present in non-mammals (pigeons/fish), but research heavily focuses on its presence in mammals. This rhythmic activity does not require the suprachiasmatic nucleus (SCN), the central circadian oscillator in mammals, implying the existence of an oscillator, the FEO, outside of the SCN, but the mechanism and location of the FEO is not yet known. There is ongoing research to investigate if the FEO is the only non-light entrainable oscillator in the body.

Elizabeth Maywood is an English researcher who studies circadian rhythms and sleep in mice. Her studies are focused on the suprachiasmatic nucleus (SCN), a small region of the brain that controls circadian rhythms.

Ken-Ichi Honma is a Japanese chronobiologist who researches the biological mechanisms underlying circadian rhythms. After graduating from Hokkaido University School of Medicine, he practiced clinical psychiatry before beginning his research. His recent research efforts are centered around photic and non-photic entrainment, the structure of circadian clocks, and the ontogeny of circadian clocks. He often collaborates with his wife, Sato Honma, on work involving the mammalian suprachiasmatic nucleus (SCN).

References

  1. "Loop | MARTIN RALPH". loop.frontiersin.org. Retrieved 2023-04-11.
  2. Daan, Serge; Pittendrigh, Colin S. (1976-10-01). "A Functional analysis of circadian pacemakers in nocturnal rodents". Journal of Comparative Physiology. 106 (3): 253–266. doi:10.1007/BF01417857. ISSN   1432-1351. S2CID   7164170.
  3. Ralph, Martin R.; Menaker, Michael (1988-09-02). "A Mutation of the Circadian System in Golden Hamsters". Science. 241 (4870): 1225–1227. Bibcode:1988Sci...241.1225R. doi:10.1126/science.3413487. ISSN   0036-8075. PMID   3413487.
  4. Refinetti, Roberto (2014). "Relationship between circadian period and body size in the tau -mutant golden hamster". Canadian Journal of Physiology and Pharmacology. 92 (1): 27–33. doi:10.1139/cjpp-2013-0276. ISSN   0008-4212. PMID   24383870.
  5. Anne Stirland, J.; Grosse, Julia; Loudon, Andrew S.I.; Hastings, Michael H.; Maywood, Elizabeth S. (1995-08-01). "Gonadal Responses of the Male Tau Mutant Syrian Hamster to Short-Day-Like Programmed Infusions of Melatonin1". Biology of Reproduction. 53 (2): 361–367. doi: 10.1095/biolreprod53.2.361 . ISSN   0006-3363. PMID   7492688.
  6. Lisitsyn, Nikolai A.; Segre, Julia A.; Kusumi, Kenro; Lisitsyn, Natalia M.; Nadeau, Joseph H.; Frankel, Wayne N.; Wigler, Michael H.; Lander, Eric S. (1994). "Direct isolation of polymorphic markers linked to a trait by genetically directed representational difference analysis". Nature Genetics. 6 (1): 57–63. doi:10.1038/ng0194-57. ISSN   1061-4036. PMID   8136836. S2CID   19474123.
  7. Lowrey, Phillip L.; Shimomura, Kazuhiro; Antoch, Marina P.; Yamazaki, Shin; Zemenides, Peter D.; Ralph, Martin R.; Menaker, Michael; Takahashi, Joseph S. (2000-04-21). "Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau". Science. 288 (5465): 483–491. Bibcode:2000Sci...288..483L. doi:10.1126/science.288.5465.483. ISSN   0036-8075. PMC   3869379 . PMID   10775102.
  8. Ko, Caroline H.; Takahashi, Joseph S. (15 October 2006). "Molecular components of the mammalian circadian clock". Human Molecular Genetics. 15: R271–R277. doi:10.1093/hmg/ddl207. PMC   3762864 . PMID   16987893 . Retrieved 2023-04-11.
  9. Ralph, Martin R.; Foster, Russell G.; Davis, Fred C.; Menaker, Michael (1990-02-23). "Transplanted Suprachiasmatic Nucleus Determines Circadian Period". Science. 247 (4945): 975–978. Bibcode:1990Sci...247..975R. doi:10.1126/science.2305266. ISSN   0036-8075. PMID   2305266.
  10. Gall, Andrew J.; Shuboni-Mulligan, Dorela D. (2022). "Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways". Frontiers in Neuroscience. 16: 911153. doi: 10.3389/fnins.2022.911153 . PMC   9395722 . PMID   36017187.
  11. Pickard, Gary E.; Ralph, Martin R.; Menaker, Michael (March 1987). "The Intergeniculate Leaflet Partially Mediates Effects of Light on Circadian Rhythms". Journal of Biological Rhythms. 2 (1): 35–56. doi: 10.1177/074873048700200104 . ISSN   0748-7304. PMID   2979650. S2CID   26133014.
  12. Ralph, Martin R.; Mrosovsky, N. (December 1992). "Behavioral Inhibition of Circadian Responses to Light". Journal of Biological Rhythms. 7 (4): 353–359. doi:10.1177/074873049200700408. ISSN   0748-7304. PMID   1286206. S2CID   35179700.
  13. Ralph MR, Menaker M. GABA regulation of circadian responses to light. I. Involvement of GABAA-benzodiazepine and GABAB receptors. J Neurosci. 1989;9(8):2858-2865. doi:10.1523/JNEUROSCI.09-08-02858.1989
  14. Cain, Sean W.; Ralph, Martin R. (2009-01-01). "Circadian modulation of conditioned place avoidance in hamsters does not require the suprachiasmatic nucleus". Neurobiology of Learning and Memory. 91 (1): 81–84. doi:10.1016/j.nlm.2008.10.005. ISSN   1074-7427. PMID   19013252. S2CID   207261479.
  15. Cain, Sean W.; Rawashdeh, Omar A.; Siu, Michael; Kim, Seung Cheol; Ralph, Martin R. (2017-05-01). "Dopamine dependent setting of a circadian oscillator underlying the memory for time of day". Neurobiology of Learning and Memory. 141: 78–83. doi:10.1016/j.nlm.2017.03.015. ISSN   1074-7427. PMID   28366864. S2CID   4373649.
  16. Hurd, Mark W.; Ralph, Martin R. (October 1998). "The Significance of Circadian Organization for Longevity in the Golden Hamster". Journal of Biological Rhythms. 13 (5): 430–436. doi:10.1177/074873098129000255. ISSN   0748-7304. PMID   9783234. S2CID   7088058.
  17. Schweitzer, Jeffrey S.; Song, Bin; Herrington, Todd M.; Park, Tae-Yoon; Lee, Nayeon; Ko, Sanghyeok; Jeon, Jeha; Cha, Young; Kim, Kyungsang; Li, Quanzheng; Henchcliffe, Claire; Kaplitt, Michael; Neff, Carolyn; Rapalino, Otto; Seo, Hyemyung (2020-05-14). "Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease". New England Journal of Medicine. 382 (20): 1926–1932. doi:10.1056/NEJMoa1915872. ISSN   0028-4793. PMC   7288982 . PMID   32402162.
  18. Wang, Jiaming; Tian, Yu; Shi, Xin; Feng, Zhaohai; Jiang, Lei; Hao, Yujun (2022-05-06). "Safety and Efficacy of Cell Transplantation on Improving Motor Symptoms in Patients With Parkinson's Disease: A Meta-Analysis". Frontiers in Human Neuroscience. 16: 849069. doi: 10.3389/fnhum.2022.849069 . ISSN   1662-5161. PMC   9120834 . PMID   35601911.
  19. Tong, L. M.; Djukic, B.; Arnold, C.; Gillespie, A. K.; Yoon, S. Y.; Wang, M. M.; Zhang, O.; Knoferle, J.; Rubenstein, J. L. R.; Alvarez-Buylla, A.; Huang, Y. (2014-07-16). "Inhibitory Interneuron Progenitor Transplantation Restores Normal Learning and Memory in ApoE4 Knock-In Mice without or with A Accumulation". Journal of Neuroscience. 34 (29): 9506–9515. doi:10.1523/JNEUROSCI.0693-14.2014. ISSN   0270-6474. PMC   4099537 . PMID   25031394.
  20. 1 2 3 "Martin R. Ralph: H-index & Awards - Academic Profile". Research.com. Retrieved 2023-04-11.
  21. Shrestha, Tenjin C.; Šuchmanová, Karolína; Houdek, Pavel; Sumová, Alena; Ralph, Martin R. (2018-10-19). "Implicit time-place conditioning alters Per2 mRNA expression selectively in striatum without shifting its circadian clocks". Scientific Reports. 8 (1): 15547. Bibcode:2018NatSR...815547S. doi:10.1038/s41598-018-33637-y. ISSN   2045-2322. PMC   6195625 . PMID   30341352.
  22. "Loop | MARTIN RALPH". loop.frontiersin.org. Retrieved 2023-04-27.
  23. "Martin R. Ralph - EBRS". www.ebrs-online.org. Retrieved 2023-04-11.