Mary Jo Ondrechen

Last updated
Mary Jo Ondrechen
Ondrechen Mary Jo 2011.jpg
Ondrechen on the campus of Brandeis University in 2011
Born1953 (age 6970)
NationalityAmerican
Alma mater
Known forTHEMATICS, SALSA, POOL
Scientific career
Fields theoretical chemistry
Institutions Northeastern University
Doctoral advisor Mark A. Ratner

Mary Jo Ondrechen (born 1953) is an American chemist, educator, researcher, community leader and activist. She serves as Professor of Chemistry and Chemical Biology and Principal Investigator [1] of the Computational Biology Research Group at Northeastern University in Boston, Massachusetts.

Contents

Education

Ondrechen received an American Chemical Society certified bachelor's degree in chemistry from Reed College, Portland, Oregon, in 1974. She pursued doctoral studies in Chemistry and Chemical Physics at Northwestern University, Evanston, Illinois, and earned the Ph.D. degree in 1978, under the direction of Mark A. Ratner. [2] After postdoctoral research appointments at the University of Chicago and at Tel-Aviv University in Israel, the latter as a NATO Postdoctoral Fellow, she joined the faculty at Northeastern University in Boston, Massachusetts in 1980. [3]

Research and discoveries

Her earlier research achievements include the design of molecules and materials with desirable spectroscopic and conductive properties, prediction of electric field effects in molecules and proteins, the optimization of energy conversion devices, and the design and characterization of ionic conductor materials for rechargeable batteries. Her current research activities include modeling of biological macromolecules [4] and predictive calculations for functional genomics.

She co-developed THEMATICS [5] [6] [7] (Theoretical Microscopic Anomalous Titration Curve Shapes), a simple computational predictor of functional information about proteins from their three-dimensional structure alone. THEMATICS predicts catalytic and binding sites in proteins with high sensitivity and good selectivity. A unique and powerful feature of her THEMATICS method is that it requires neither sequence nor structural comparisons and hence applies to novel folds, orphan sequences, and also to engineered polypeptide systems.

She is also the co-developer, with Wenxu Tong and Ronald J. Williams, of a novel machine learning technology called Partial Order Optimum Likelihood (POOL). [8] [9] POOL is a monotonicity-constrained maximum likelihood method for the prediction of properties that depend monotonically on the input features. This powerful method, coupled with THEMATICS input features, is a top-performing active site predictor for protein structures.

These methods are also being used for the successful annotation of structural genomics proteins, i.e. for the discovery of the function of gene products whose function is currently unknown. Her Structurally Aligned Local Sites of Activity (SALSA) method uses local sets of amino acid residues that are computationally predicted to be active in catalysis to identify the biochemical function of enzyme structures of unknown function.

These computational methods are also currently used to understand how enzymes affect catalysis. [10] Specifically Professor Ondrechen has pioneered the concept of spatially extended enzyme active sites, and that the participation of amino acids, even if they are distant from the site of the catalyzed reaction, may be predicted with a simple calculation. [11]

Her research group has also developed computational methods to improve the design of artificial enzymes.

In 2020 Ondrechen's research group added a new project to characterize the proteins of SARS-CoV-2, the virus that causes COVID-19, and to seek interventions to disrupt the viral life cycle [12] [13]

Community activism

Ondrechen is a community leader and activist. She has recently served on the board of advisors of the Washington, D.C.-based Interstate Technology and Regulatory Council (ITRC), representing the interests of community and tribal stakeholders. [14] She is the former president of the board of directors of the North American Indian Center of Boston (NAICOB) [15] and served as chair of the board of directors of the Albuquerque, New Mexico-based American Indian Science and Engineering Society (AISES) from 2011 to 2013. [16] A passionate advocate for stewardship of the Earth, she previously has served on the Conservation Commission for Hopkinton, Massachusetts, and on the Community Leaders Network of the U.S. Department of Energy. She has been particularly active in the promotion of innovative technologies to solve environmental problems. [17] [18] [19] She also actively advocates for the inclusion of public and tribal stakeholders in environmental evaluation, decision-making, and management.

She was a speaker at the March for Science in Washington, D.C., in April, 2017. [20] [21]

She has given numerous presentations on diversity and inclusiveness in the science, technology, engineering, and mathematics (STEM) fields. [22] [23]

Related Research Articles

<span class="mw-page-title-main">Protein</span> Biomolecule consisting of chains of amino acid residues

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

<span class="mw-page-title-main">Protein tertiary structure</span> Three dimensional shape of a protein

Protein tertiary structure is the three-dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may interact and bond in a number of ways. The interactions and bonds of side chains within a particular protein determine its tertiary structure. The protein tertiary structure is defined by its atomic coordinates. These coordinates may refer either to a protein domain or to the entire tertiary structure. A number of tertiary structures may fold into a quaternary structure.

<span class="mw-page-title-main">Allosteric regulation</span> Regulation of enzyme activity

In biochemistry, allosteric regulation is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site.

Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.

<span class="mw-page-title-main">Protein structure prediction</span> Type of biological prediction

Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different from the inverse problem of protein design. Protein structure prediction is one of the most important goals pursued by computational biology; and it is important in medicine and biotechnology.

<span class="mw-page-title-main">Structural bioinformatics</span> Bioinformatics subfield

Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 3D structures such as comparisons of overall folds and local motifs, principles of molecular folding, evolution, binding interactions, and structure/function relationships, working both from experimentally solved structures and from computational models. The term structural has the same meaning as in structural biology, and structural bioinformatics can be seen as a part of computational structural biology. The main objective of structural bioinformatics is the creation of new methods of analysing and manipulating biological macromolecular data in order to solve problems in biology and generate new knowledge.

<span class="mw-page-title-main">Binding site</span> Molecule-specific coordinate bonding area in biological systems

In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may include other proteins, enzyme substrates, second messengers, hormones, or allosteric modulators. The binding event is often, but not always, accompanied by a conformational change that alters the protein's function. Binding to protein binding sites is most often reversible, but can also be covalent reversible or irreversible.

Chemical biology is a scientific discipline between the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. In contrast to biochemistry, which involves the study of the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology deals with chemistry applied to biology.

<span class="mw-page-title-main">Protein–protein interaction</span> Physical interactions and constructions between multiple proteins

Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context.

<span class="mw-page-title-main">Intrinsically disordered proteins</span> Protein without a fixed 3D structure

In molecular biology, an intrinsically disordered protein (IDP) is a protein that lacks a fixed or ordered three-dimensional structure, typically in the absence of its macromolecular interaction partners, such as other proteins or RNA. IDPs range from fully unstructured to partially structured and include random coil, molten globule-like aggregates, or flexible linkers in large multi-domain proteins. They are sometimes considered as a separate class of proteins along with globular, fibrous and membrane proteins.

<span class="mw-page-title-main">JoAnne Stubbe</span> American chemist

JoAnne Stubbe is an American chemist best known for her work on ribonucleotide reductases, for which she was awarded the National Medal of Science in 2009. In 2017, she retired as a Professor of Chemistry and Biology at the Massachusetts Institute of Technology.

<span class="mw-page-title-main">Gunnar von Heijne</span> Swedish scientist

Professor Nils Gunnar Hansson von Heijne, born 10 June 1951 in Gothenburg, is a Swedish scientist working on signal peptides, membrane proteins and bioinformatics at the Stockholm Center for Biomembrane Research at Stockholm University.

Ronald J. Williams is professor of computer science at Northeastern University, and one of the pioneers of neural networks. He co-authored a paper on the backpropagation algorithm which triggered a boom in neural network research. He also made fundamental contributions to the fields of recurrent neural networks and reinforcement learning. Together with Wenxu Tong and Mary Jo Ondrechen he developed Partial Order Optimum Likelihood (POOL), a machine learning method used in the prediction of active amino acids in protein structures. POOL is a maximum likelihood method with a monotonicity constraint and is a general predictor of properties that depend monotonically on the input features.

Protein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical reactions to transport to signal transduction, and a single protein may play a role in multiple processes or cellular pathways.

<span class="mw-page-title-main">Enzyme Function Initiative</span> Collaborative project to determine enzyme function

The Enzyme Function Initiative (EFI) is a large-scale collaborative project aiming to develop and disseminate a robust strategy to determine enzyme function through an integrated sequence–structure-based approach. The project was funded in May 2010 by the National Institute of General Medical Sciences as a Glue Grant which supports the research of complex biological problems that cannot be solved by a single research group. The EFI was largely spurred by the need to develop methods to identify the functions of the enormous number proteins discovered through genomic sequencing projects.

<span class="mw-page-title-main">Ruth Nussinov</span> Bioinformatician

Ruth Nussinov is an Israeli-American biologist born in Rehovot who works as a Professor in the Department of Human Genetics, School of Medicine at Tel Aviv University and is the Senior Principal Scientist and Principal Investigator at the National Cancer Institute, National Institutes of Health. Nussinov is also the Editor in Chief of the Current Opinion in Structural Biology and formerly of the journal PLOS Computational Biology.

Jeffrey Skolnick is an American computational biologist. He is currently a Georgia Institute of Technology School of Biology Professor, the Director of the Center for the Study of Systems Biology, the Mary and Maisie Gibson Chair, the Georgia Research Alliance Eminent Scholar in Computational Systems Biology, the Director of the Integrative BioSystems Institute, and was previously the Scientific Advisor at Intellimedix.

<span class="mw-page-title-main">Kuo-Chen Chou</span> Chinese-American biophysicist

Kuo-Chen Chou was a Chinese-American biophysicist and bioinformatician who founded the Gordon Life Science Institute, a non-profit research organization in Boston, Massachusetts. Among other contributions, he developed pseudo amino acid composition (PseAAC), used in computational biology for proteomics analysis and pseudo K-tuple nucleotide composition (PseKNC) for genome analysis. He is the father of James Chou.

<span class="mw-page-title-main">AlphaFold</span> Artificial intelligence program by DeepMind

AlphaFold is an artificial intelligence (AI) program developed by DeepMind, a subsidiary of Alphabet, which performs predictions of protein structure. The program is designed as a deep learning system.

Theoretical Microscopic Anomalous Titration Curve Shapes (THEMATICS) is a computational method for predicting the biochemically active amino acids in a protein three-dimensional structure.

References

  1. Northeastern University College of Science Faculty - Chemistry and Chemical Biology. (2014).
  2. "Ratner Group – Home of the Ratner Research Group". chemgroups.northwestern.edu.
  3. Pollastri, M.P. (2017)
  4. Finley, A., Investigating Enzyme-Substrate Interactions with Vitamin B6. (1999).
  5. Protein Function Predicted With New "THEMATICS" Method Developed By Northeastern University & Brandeis Scientists. ScienceDaily, (2001).
  6. Borman, S., From sequence to consequence. Chemical and Engineering News, 79(48): p. 31-33 (2001).
  7. Ball, P., Computers spot shape clues. Nature, (2001).
  8. Tong, Wenxu; Wei, Ying; Murga, Leonel F.; Ondrechen, Mary Jo; Williams, Ronald J. (2009-01-16). "Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties". PLOS Computational Biology. 5 (1): e1000266. Bibcode:2009PLSCB...5E0266T. doi: 10.1371/journal.pcbi.1000266 . ISSN   1553-7358. PMC   2612599 . PMID   19148270.
  9. Somarowthu, Srinivas; Yang, Huyuan; Hildebrand, David G. C.; Ondrechen, Mary Jo (2011-06-01). "High-performance prediction of functional residues in proteins with machine learning and computed input features". Biopolymers. 95 (6): 390–400. doi:10.1002/bip.21589. ISSN   0006-3525. PMID   21254002.
  10. Ondrechen, Mary Jo; Clifton, James G.; Ringe, Dagmar (2001-10-23). "THEMATICS: A simple computational predictor of enzyme function from structure". Proceedings of the National Academy of Sciences of the United States of America. 98 (22): 12473–12478. Bibcode:2001PNAS...9812473O. doi: 10.1073/pnas.211436698 . ISSN   0027-8424. PMC   60078 . PMID   11606719.
  11. Herring, A., Form and function in enzyme activity. (2012).
  12. https://www.metrowestdailynews.com/news/20200501/hopkinton-resident-receives-national-science-foundation-grant-to-study-coronavirus Hopkinton resident receives National Science Foundation grant to study coronavirus.
  13. https://news.northeastern.edu/2020/05/15/the-coronavirus-might-have-hidden-weak-spots-machine-learning-could-help-find-them/ The coronavirus might have hidden weak spots. Machine learning could help find them.
  14. Willett, A., (2012)
  15. Dunn, J., About NAICOB. (2013).
  16. EchoHawk, S., AISES Board of Directors. (2014).
  17. In Situ Chemical Oxidation. (2000).
  18. Technical and Regulatory Guidance for the Triad Approach: A New Paradigm for Environmental Project Management. (2003).
  19. The Use of Direct Push Well Technology for Long-term Environmental Monitoring in Groundwater Investigations. (2006).
  20. Joel Achenbach; Ben Guarino; Sarah Kaplan (2021-10-27) [2017-04-21]. "Why scientists are marching on Washington and more than 600 other cities". The Washington Post . Washington, D.C. ISSN   0190-8286. OCLC   1330888409.[ please check these dates ]
  21. "Prof. Mary Jo Ondrechen at the March for Science". YouTube .
  22. Hernandez, R., OXIDE Biography: Mary Jo Ondrechen. (2014).
  23. Pathways to Science, Mary Jo Ondrechen. (2012).